アーカイブ | 8月, 2018

№865

30 8月
NEW !
テーマ:

№865

微分方程式の解が、媒介変数表示される場合です。 p=1の時 今の数学では、考えられないとなっていますね。 分母がゼロで、分子がゼロでないから、しいて考えれば、 ともに 無限大です。

それらは きちんと その時 有限の値をとって、きちんと意味を有します。

ゼロ除算算法の 自然性、良さは 歴然ですね 。 現代数学のおかしさ を 人は 気づくのでは? 世界の初等数学の変更を 要求されています。

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか

https://www.youtube.com/watch?v=iQld9cnDli4

 

〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか

https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s

 

NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

https://www.youtube.com/watch?v=KjvFdzhn7Dc

NHKスペシャル 神の数式 完全版 4 異次元宇宙は存在するか

https://www.youtube.com/watch?v=fWVv9puoTSs

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

 

 

 

\end{thebibliography}

 

\end{document}

 

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197

 

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf

 

№864

23 8月
NE2018080230864W !
テーマ:

№864

三角関数の等式は 分母がゼロになる時にも 意味が有り、等式がそのまま成り立つ場合が 非常に 沢山有ります。1/0=0/0=0 の等式を そのまま利用できる場合です。

 

しかし、それでは 成り立たない場合も ある。 その時は ローラン展開の係数で定義された ゼロ除算算法で 考えられば 特異点でも そのまま成り立つ。 大事な知見です。

The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-24Coordinator

http://www.meetingsint.com/conferences/appliedphysics-mathematicsApplied Physics and Mathematics Conference 2018
appliedphysics@annualmeetings.net

appliedphysics@meetingseries.org

The amount charged for E-Posters is to display the E-Posters only on websiteE-Posters

The abstract will be published in conference proceeding book

The presenter is not required to be present in person at the conference

_____________________________________________________________________

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Eulcid:

 

By the concept of the Moore-Penrose generalized solution of the fundamental equation $ax=b$, the division by zero was trivial and clear all as $b/0=0$ in the general fraction that is defined by the generalized solution of the equation $ax=b$.

Division by zero is trivial and clear from the concept of repeated subtraction – H. Michiwaki.

 

Recall the uniqueness theorem by S. Takahasi on the division by zero.

 

The simple field structure containing division by zero by M. Yamada.

 

Many applications of the division by zero to Wasan geometry by H. Okumura.

_____________________________________________________________________

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか

https://www.youtube.com/watch?v=iQld9cnDli4

 

〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか

https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s

 

NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

https://www.youtube.com/watch?v=KjvFdzhn7Dc

NHKスペシャル 神の数式 完全版 4 異次元宇宙は存在するか

https://www.youtube.com/watch?v=fWVv9puoTSs

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

 

 

 

\end{thebibliography}

 

\end{document}

 

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf

再生核研究所声明 450(2018.8.22):  水前寺清子様に呼応して - 雄たけび

22 8月

再生核研究所声明 450(2018.8.22):  水前寺清子様に呼応して - 雄たけび

雄たけびとして、谷亮子柔道選手の金メダル獲得の際の満面喜びのシーン、北島康介水泳選手の金メダル獲得の際の発言、超気持良いなどの叫びが思い出される。下記の歓喜、凄い感銘をうけて、呼応する形で 湧いてきた情念を思いのままに表現したくなった。

(水前寺清子様、坂本冬美様、それに 皆さん、歌 素晴らしかった。 伊東さんの紹介も 味わいが有りますね。素晴らしい日本の歌:NHK 新BS 日本の歌、 素晴らしい。日本の歌謡界のレベルは 高いですね。 ― 雄たけび: 雄叫び ・ 叫び ・ 怒号 ・雄 嘶き ・ 絶叫 ・ 雄たけび ・ ときの声 ・ 鬨の声 ・ 勝ちどき ・ 歓声 ・ 喚声 ・ 叫び声)。

清子様の歌詞に 男は、泣いてはいけない、ほれなきゃいけない、天下を取れ と凄い言葉がある、まさか数学で天下を狙うことは 想像もできない程に凄い天才や秀才たちの集まりの世界、能力も足りなく小さな存在である立場では思いもよらないことと発想するだろう。ところが世には 偶然やまぐれ当たりがあるから、面白い。それは、一般の方からの質問 100/0 の意味を問われて 真面目に深く考えて、偶然に発見したものである。いわゆるゼロ除算、ゼロで割ることを考える、古い歴史をもつ神秘的な問題に対する あまりにも簡単な発見である。それが、アリストテレス、ユークリッド以来の空間の発見に繋がり、初等数学全般の修正を求めているから、 天下取りより はるかに愉快な事件ではないだろうか。 世界の初等数学全般を変更して、20億人以上が理解して 新しい数学、世界の出現に驚嘆するだろう。内容は簡単に 真直ぐに立った電柱の勾配は、y軸の勾配はゼロであると述べられる。 数式で表現すれば、

1/0=0/0=z/0= \tan(\pi/2)=0

と簡潔に述べられる。簡単な関数y=1/xの原点x=0における値はゼロである。これはゼロと無限大の微妙な関係を捉えている。それは人生とは何かという問いに対して 新しい世界観を示している。またゼロ除算の歴史は 人間とはどのようなもので、人間が如何に独断と偏見に満ちた存在で、人間の愚かさを良く示している。数学的な内容について、次を追記して置こう:

再生核研究所声明 442(2018.8.10):  ゼロ除算研究の大義と研究協力へのお願い

一般向きにゼロ除算の解説を 4年間を越えて続けている:

数学基礎学力研究会 サイト:

http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。

ゼロ除算の研究の意義、重要性は単純明快であると考えられる。世にゼロ除算は不可能であるとか、ゼロで割ってはいけないは世界の常識でありインターネット上でもそのような方向で間違った情報が氾濫しているばかりか、数学界でも 禁じられた世界で永くタブーとして確立している。 その神秘的な歴史は アリストテレスにさかのぼると言われ、直接的にも算術の確立以来1300年を越える、悪しき認識で現在に至っている。4年以上前に ゼロ除算を偶然発見して、 直ちにその重要性を指摘、理解を求める努力を行ってきたが、 あまりにも永い悪しき伝統のゆえに中々理解されず、現在に至っても公認、認知されているとは言えず、全体的には無視か誤解の状況にあると判断される。 例えば非ユークリッド幾何学の発見のように 全く新規な世界が現れたのであるから、初期の段階で拒否の心が強いと言える。しかしながら、発表論文や講演を1つでも読み、聴講すれば、その意義の重大さに驚嘆させられるのではないだろうか。 実際には、あまりにも驚嘆して、受け入れられず、 発見された新世界を覗かない人すら多い。 全く新しい数学で、理解を求めるのが困難な状況が有り、この4年間の経緯がそれらをよく示している。 新しい数学を紹介するために 従来数学を変更する具体例は800件を超えていて、公表している。

最初の段階における構想を著書の形に纏め、一応の理論として公表、広く意見を求めている。 全く新規な数学で、初等数学全般の改変が求められていると表現されているので、その意義の大きさは歴然である。 典型的な具体例は \tan(\pi/2)=0、すなわち、 y軸の勾配がゼロであると表現され、それは幾何学、解析学、ユークリッド幾何学に大きな影響を与え、 ユークリッド以来の我々の空間の認識を変える必要性が求められている。我々の初等数学は不完全であり、完全化が求められているというのであるから、ゼロ除算の研究の重要性は明らかであろう。

割り算の考えの変更で 小学生以降の算数、数学の教育の変更が求められ、それは大きな世界が 拓かれることを意味する。

そこで、新しい数学の理解を得ることの困難な状況に対して、多くの人の理解が得られるように各種協力を 歴史の大義を受けて、要請したい。 もとより、数学を日本のスケールで論じる気持ちはないが、 しかしながら、日本で、世界の初等数学全般を変更し、数学を美しく完全化するという構想が進めば、もともと輸入に頼って来た欧米数学に対して 欧米数学を基本的に変え、美しい数学を建設できる絶好の機会と捉えれば、 ゼロ除算研究の大義に参画される熱情が湧いてくるのではないかと考える。 これを楽しく考えて見よう。 世界の初等数学に公式1/0=0/0=z/0=\tan(\pi/2)=0 が載り、1000年を越える悪しき世界史を変更、ゼロ除算は自然な考え方で可能で、 ゼロ除算の成果は普遍的に活用され、ユークリッド幾何学は 完全化され、修正されたと言える時代を直ぐに迎えられるだろう。 日本国の世界に対する顕著な貢献として、 数学界を越えて世界史に貢献できる絶好の機会であると考える。

この情念に、多くの人々が参加され、新しい世界を共に喜びに満ちて開拓したいと考える。 各種できるところでのゼロ除算研究・教育活動への協力を広くお願いしたい。

次も参照:

再生核研究所声明 431(2018.7.14):  y軸の勾配はゼロである - おかしな数学、おかしな数学界、おかしな雑誌界、おかしなマスコミ界?

再生核研究所声明 437 (2018.7.30) :  ゼロ除算とは何か - 全く新しい数学、新世界である

再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について

以 上

2018.8.20.14:47 一気に書く。

2018.8.20.15:40 既に相当良い。

2018.8.20.19:29

2018.8.20.22:22 秋の感じ、虫の声、涼しさ。

2018.8.21.05:31 数式の後少し追加。

2018.8.21.08:37

2018.8.21.10:41 良い。

2018.8.21.11:25

2018.8.21.13:56

2018.8.21.18:24 良い。

2018.8.21.21:18 y=1/xも触れる。

2018.8.22.05:44 良い完成、公表。小鳥たち元気、爽やかな朝。

 

AD

再生核研究所声明 449(2018.8.21): この世とあの世 - 人工知能の進化によって

21 8月

再生核研究所声明 449(2018.8.21): この世とあの世 - 人工知能の進化によって

 

あの世とは 死後の世界として、想念上の世界と考えられよう。ところが人口知能の進化とともに不思議な世界と問題が現れつつあるので、考察をしておこう。

まず、人間は往々にして、消えていくことに対して嫌い、時として永遠の存在になりたいと志向しがちである。これは生命の基本定理である 生きて存在しなければ 始まらないという基本原則に根差している。古くはピラミッドの建設やミイラ作り、多くの志の基礎に存在する。しかしながら、それらの意義を改めて問う必要が起きている。それらの心の元をしっかり捉える必要がある。まず、次の状況を捉えよう:

再生核研究所声明 447(2018.8.17): 人工知能の進化と人間について:

人工知能は 未解決の数学の理論や物理法則なども どんどん明らかにして行くと同時に 人間自身についても究明していくだろう。人間とは何かという問いについて、1個の人間に対する問いと回答で人間を一つのシステムと考えたとき、出入力の関係からシステムを特定する観点からも 1個の人間の解明がどんどん進み、相当に人物を捉えられるようになるだろう。人造人間の出現について述べた 次も参照:

再生核研究所声明 403(2017.11.20):  私より私らしい私の出現 - アンドロイド

このような関心や進化は、人間の本質的な要求に関わっているので、留まることが無いのではないだろうか。 医学が人体の構造、機能をどんどん解明してきたように、人工知能は 人間の精神面での解明をどんどん進め、人工知能が人間以上に人間を知る時代が来るのではないだろうか。ひと昔まえ、唯物史観の哲学が流行ったが、情報が世界のすべてであるような世界観が広まるのではないだろうか。 要するに知的情報などが数値化されて 人口知能で解明されることが進むということである。

例えば、ニュートンとは何者かと問えば、ニュートンは何をやり、どのような影響を世界史に与えたかと問うが、生涯の記録から、このような問い、このような場面ではどのように対応するだろうか。それらの対応がどんどん 精しく明かにされてくるということである。アンドロイドのように どんどんニュートンの人物像を詳しく捉えられるようになるだろう。

そこで、次の時代には 人間とは何かとの問いが一段と進み、どんどん新しい世界が拓けてくるだろう。

医師や料理の分野などあらゆる分野に進出してくるのではないだろうか。 一言で言えば、人間がなすことの多くを人工知能が行う時代の到来である。

アンドロイドなどの精密な存在は、人間の精神を不滅の存在ならしめ、また、既に生物的な存在を 受精卵や精子の保存で永続化させる生物学は すでに確立している。

盆に先祖さまを偲びたいと発想する場面では、 既にアンドロイドのような存在で生存中の多くを追想できると同時に相当な会話さえできる時代が近づきつつある。歌い手さんの素晴らしい情景は、さながら生存中と変わらないように再現も会話、対話も可能な時代を迎えている。ひと昔前、あの世と考えられた多くは人工知能の発達によってこの世の存在と区別できないような 状況を迎えている。消えて行った膨大な世界が何時でも再現出来て 現存在になり得る時代とは 一体どのように考えれば良いだろうか。あらゆる情報が整理され保存され、それが生命体のように生き生きと現れる時代である。- その時、人間はとてつもなく広い世界を覗ける時代で、自由の限りない拡大である。自我をしっかりさせ、情報、世界の選択による 統一的な存在として、我は何者かと絶えず問い続けることが重要になるだろう。 ― 広大な一面に御馳走の山を見たとき、自分に合った適切な食を選択しなければならないようにである。

大きな課題で混乱しそうであるが、従来、あの世とこの世は結構区別がついていた時代であったが、あの世とは この世の情報のことで、それらが再現されることで、2つの世界は混然一体の存在になりつつある。ピラミッドやミイラ、多くの記念碑は空しくなり、新しい時代に大きな変化を遂げる時代が 近づきつつある。― 遺族を偲ぶ盆の習慣など、遺族の方と会話さえでき、何でも想い出を再現できる時代の到来である。お墓とは、図書館の変形のような存在になる時代である。10年後、20年後に意見を表明できるシステムさえ確立している。

この世もあの世もこの世の情報であるが、 それらの中には想像によって作られた虚像、場合によっては意図的に作られた虚構も多いので、1個の人間はそれらの中で生きていく意味をしっかりさせていく必要がある。生きるということは どのようなことで、生きている意義とは何かと問い続ける必要がある。人間にとって真に意味のあること、価値あることとは何だろうか。多くの希望、願いが叶えられる時代とは 人間にとってどうなるだろうか。

以 上

2018.8.19.13:11

2018.8.19.13:24

2018.8.19.20:25 広い問題が広がっている。

2018.8.20.06:13 面白い課題、視点であるが広がりがある。

2018.8.20.11:15 良いとできる。ここで触れるべきことは有るか?

2018.8.20.13:40

2018.8.20.19:15

2018.8.20.22:10

2018.8.21.05:11 静かな虫の響きのような。良いとする。涼しい朝。

2018.8.21.05:35 完成、公表。

 

 

\title{\bf Announcement 448:\\  Division by Zero;\\  Funny History and New World}

20 8月

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\usepackage{color}

\usepackage{url}

 

%%%%%%% �}�ԍ��̃J�E���^

\newcounter{num}

\setcounter{num}{0}

%\setcounter{prop}{1}

%\newcommand{\Fg}[1][]{\thenum}

 

\newcommand\Ra{r_{\rm A}}

 

\numberwithin{equation}{section}

 

\begin{document}

\title{\bf Announcement 448:\\  Division by Zero;\\

Funny History and New World}

\author{

}

\date{2018.08.20}

 

 

\maketitle

 

\newcommand\Al{\alpha}

\newcommand\B{\beta}

\newcommand\De{\delta}

 

\def\z{\zeta}

\def\rA{r_{\rm A}}

 

 

{\bf Abstract: }  Our division by zero research group wonder why our elementary results may still not be accepted by some wide world and very recently in our Announcements: 434 (2018.7.28),

437 (2018.7.30),

438(2018.8.6), \\

441(2018.8.9),

442(2018.8.10),

443(2018.8.11),

444(2018.8.14),

in Japanese, we stated their reasons and the importance of our elementary results. Here, we would like to state their essences. As some essential reasons, we found fundamental misunderstandings on the division by zero and so we would like to state the essences and the importance of our new results to human beings over mathematics.

 

We hope that:

 

close the mysterious and long history of division by zero that may be considered as a symbol of the stupidity of the human race and open the new world since Aristotle-Eulcid.

 

From the funny history of the division by zero, we will be able to realize that

 

human beings are full of prejudice and prejudice, and are narrow-minded, essentially.

 

\medskip

 

 

\section{Division by zero}

 

The division by zero with mysterious and long history was indeed trivial and clear as in the followings:

\medskip

 

By the concept of the Moore-Penrose generalized solution of the fundamental equation $az=b$, the division by zero was trivial and clear  as $b/0=0$ in the {\bf generalized fraction} that is defined by the generalized solution of the equation $az=b$.

 

Note, in particular, that there exists a uniquely determined solution for any case of the equation $az=b$ containing the case $a=0$.

 

People, of course, consider as the division $b/a$ that it is the solution of the equation $ az =b$ and if $a=0$ then $0 \cdot z =0$ and so, for $b\ne0$ we can not consider the fraction $a/b$. We have been considered that the division by zero $b/0$ is impossible for mysteriously long years, since the document of zero in India in AD 628. In particular, note that Brahmagupta (598 -668 ?) established  four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brhmasphuasiddhnta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is right and suitable. However, he did not give its reason and did not consider  the importance case $1/0$ and the general fractions $b/0$. The division  by zero was a symbol for {\bf impossibility} or to consider the division by zero was {\bf not permitted}. For this simple and clear conclusion, we did not definitely consider more on the division by zero. However, we see many and many formulas appearing the zero in denominators, one simple and typical example is in the function $w=1/z$ for $z=0$.

We did not consider the function at the origin $z=0$.

 

In this case, however, the serious interest happens in many physical problems and also in computer sciences, as we know.

 

When we can not find the solution of the fundamental equation $az=b$, it is fairly clear to consider the Moore-Penrose generalized solution in mathematics. Its basic idea and beautiful mathematics will be definite.

Therefore, we should consider the generalized fractions following the Moore-Penrose generalized inverse. Therefore, with its meaning and definition we should consider that $b/0=0$.

 

It will be very  curious that we know very well the Moore-Penrose generalized inverse as a very fundamental and important concept, however, we did not consider the simplest case $ az =b$.

 

Its reason may be considered as follows: We will  consider or imagine that the fraction $1/0$ may be like infinity or ideal one.

 

For the fundamental function $W =1/ z $ we did not consider any value at the origin $z = 0$. Many and many people consider its value by the limiting like $+\infty $ and  $- \infty$ or the

point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or

based on the basic idea of Aristotle.  —

For the related Greece philosophy, see \cite{a,b,c}. However, as the division by zero we have to consider its value of

the function $W =1 /z$ as zero at $z = 0$. We will see that this new definition is valid widely in

mathematics and mathematical sciences, see  (\cite{mos,osm}) for example. Therefore, the division by zero will give great impacts to calculus, Euclidian geometry,  analytic geometry, complex analysis and the theory of differential equations in an undergraduate level and furthermore to our basic ideas for the space and universe.

 

For the extended complex plane, we consider its stereographic  projection mapping as the Riemann sphere and the point at infinity is realized as the north pole in the Alexsandroff’s one point compactification.

The Riemann sphere model gives  a beautiful and complete realization of the extended complex plane through the stereographic projection mapping and the mapping has beautiful properties like isogonal (equiangular) and circle to circle correspondence (circle transformation). Therefore, the Riemann sphere is a very classical concept \cite{ahlfors}.

\medskip

 

Now, with the division by zero we have to admit the strong discontinuity at the point at infinity. To accept this strong discontinuity seems to be very difficult, and therefore we showed many and many examples for giving the evidences over $800$ items.

 

\medskip

 

We back to our general fractions $1/0=0/0=z/0=0$ for its importances.

 

\medskip

 

H. Michiwaki and his 6 years old daughter Eko Michiwaki stated that in about three weeks after the discovery of the division by zero that

division by zero is trivial and clear from the concept of repeated subtraction and they showed the detailed interpretation of the general fractions. Their method is a basic one and it will give a good introduction of division and their calculation method of divisions.

 

We can say that division by zero, say $100/0$ means that we do not divide $100$ and so the number of the divided ones is zero.

 

\medskip

 

Furthermore,

recall the uniqueness theorem by S. Takahasi on the division by zero:

\medskip

 

{\bf  Proposition 1.1 }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

In the long mysterious history of the division by zero, this proposition seems to be decisive.

Indeed,  Takahasi’s assumption for the product property should be accepted for any generalization of fraction (division). Without the product property, we will not be able to consider any reasonable fraction (division).

 

Following  Proposition 1.1, we  should {\bf define}

$$

F (b, 0) = \frac{b}{0} =0,

$$

and consider, for any complex number $b$, as $0$;

that is, for the mapping

\begin{equation}

W = f(z) = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined from the form}).

 

\medskip

 

Furthermore,

the simple field structure containing division by zero was established by M. Yamada.

\medskip

 

 

In addition, for the fundamental function  $f(z) = 1/z$, note that

the function is odd function

$$

f(z) = – f(-z)

$$

and if the function may be extended as an odd function at the origin $z=0$, then the identity $f(0) = 1/0 =0$ has to be satisfied. Further, if the equation

$$

\frac{1}{z} =0

$$

has a solution, then the solution has to be $z=0$.

\medskip

 

 

\section{Division by zero calculus}

 

As the number system containing the division by zero, the Yamada field structure is complete.

 

However, for applications of the division by zero to {\bf functions}, we  need the concept of the division by zero calculus for the sake of uniquely determinations of the results and for other reasons.

 

For example,  for the typical linear mapping

\begin{equation}

W = \frac{z – i}{z + i},

\end{equation}

it gives a conformal mapping on $\{{\bf C} \setminus \{-i\}\}$ onto $\{{\bf C} \setminus \{1\}\}$ in one to one and from \begin{equation}

W = 1 + \frac{-2i}{ z – (-i)},

\end{equation}

we see that $-i$ corresponds to $1$ and so the function maps the whole $\{{\bf C} \}$ onto $\{{\bf C} \}$ in one to one.

 

Meanwhile, note that for

\begin{equation}

W = (z – i) \cdot \frac{1}{z + i},

\end{equation}

if we enter $z= -i$ in the way

\begin{equation}

[(z – i)]_{z =-i} \cdot  \left[ \frac{1}{z + i}\right]_{z =-i}  = (-2i)  \cdot 0=  0,

\end{equation}

we have another value.

\medskip

 

In many cases, the above two results will have practical meanings and so, we will need to consider many ways for the application of the division by zero and we will need to check the results obtained, in some practical viewpoints. We referred to this delicate problem with many examples.

 

 

Therefore, we will introduce the division by zero calculus that give important values for functions.  For any Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{-1}  C_n (z – a)^n + C_0 + \sum_{n=1}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

\begin{equation}

f(a) =  C_0.

\end{equation}

Note that here, there is no problem on any convergence of the expansion (2.5) at the point $z = a$, because all the terms $(z – a)^n$ are zero at $z=a$ for $n \ne 0$.

\medskip

 

For the correspondence (2.6) for the function $f(z)$, we will call it {\bf the division by zero calculus}. By considering the formal derivatives in (2.5), we {\bf can define any order derivatives of the function} $f$ at the singular point $a$; that is,

$$

f^{(n)}(a) = n! C_n.

$$

 

\medskip

 

 

 

{\bf Apart from the motivation, we  define the division by zero calculus by (2.6).}

With this assumption, we can obtain many new results and new ideas. However, for this assumption we have to check the results obtained  whether they are reasonable or not. By this idea, we can avoid any logical problems.  —  In this point, the division by zero calculus may be considered as an axiom.

\medskip

This paragraph is very important. Our division by zero is just definition and the division by zero is an assumption. Only with the assumption and definition of the division by zero calculus, we can create and enjoy our new mathematics. Therefore, the division by zero calculus may be considered as a new axiom.

 

Of course, its strong motivations were given. We did not consider any value  {\bf at  the singular point} $a$ for the Laurent expansion (2.5). Therefore, our division by zero is a new mathematics entirely and isolated singular points are a new world for our mathematics.

We had been considered properties of analytic functions {\bf  around their isolated singular points.}

 

The typical example of the division zero calculus is $\tan (\pi/2) = 0$ and the result gives great impacts to analysis and geometry.

See the references for the materials.

\medskip

 

For an identity, when we multiply zero, we obtain  the zero identity that is a trivial.

We will consider the division by zero to an equation.

 

For example, for the simple example for the line equation on the $x, y$ plane

$$

ax + by + c=0

$$

we have, formally

$$

x + \frac{by + c}{a} =0,

$$

and so, by the division by zero, we have, for $a=0$, the reasonable result

$$

x = 0.

$$

 

However, from

$$

\frac{ax + by}{c} + 1 =0,

$$

for $c=0$, we have the contradiction, by the division by zero

$$

1 =0.

$$

For this case, we can consider that

$$

\frac{ax + by}{c} + \frac{c}{c} =0,

$$

that is always valid. {\bf In this sense, we can divide an equation by zero.}

 

\section{Conclusion}

 

Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

 

We have to arrange globally our modern mathematics with our division by zero  in our undergraduate level.

 

We have to change our basic ideas for our space and world.

 

We have to change globally our textbooks and scientific books on the division by zero.

 

From the mysterious history of the division by zero, we will be able to study what are human beings and about our narrow-minded.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{ahlfors}

L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.

 

\bibitem{ass}

H. Akca, S. Pinelas and S. Saitoh, The Division by Zero z/0=0 and Differential Equations (materials).

International Journal of Applied Mathematics and Statistics, Int. J. Appl. Math. Stat. Vol. 57; Issue No. 4; Year 2018, ISSN 0973-1377 (Print), ISSN 0973-7545 (Online).

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{ms16}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$,

Advances in Linear Algebra \& Matrix Theory, {\bf 6}(2016), 51-58

Published Online June 2016 in SciRes.   http://www.scirp.org/journal/alamt

\\ http://dx.doi.org/10.4236/alamt.2016.62007.

 

 

\bibitem{mms18}

T. Matsuura, H. Michiwaki and S. Saitoh,

$\log 0= \log \infty =0$ and applications. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 293-305.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{mos}

H. Michiwaki, H. Okumura and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces,

International Journal of Mathematics and Computation, {\bf 2}8(2017); Issue  1, 1-16.

 

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), {\bf 1}(2017),  70-77.

 

\bibitem{os}

H. Okumura and S. Saitoh, The Descartes circles theorem and division by zero calculus. https://arxiv.org/abs/1711.04961 (2017.11.14).

 

\bibitem{o}

H. Okumura, Wasan geometry with the division by 0. https://arxiv.org/abs/1711.06947 International  Journal of Geometry.

 

\bibitem{os18april}

H.  Okumura and S. Saitoh,

Harmonic Mean and Division by Zero,

Dedicated to Professor Josip Pe$\check{c}$ari$\acute{c}$ on the occasion of his 70th birthday, Forum Geometricorum, {\bf 18} (2018), 155—159.

 

\bibitem{os18}

H. Okumura and S. Saitoh,

Remarks for The Twin Circles of Archimedes in a Skewed Arbelos by H. Okumura and M. Watanabe, Forum Geometricorum, {\bf 18}(2018), 97-100.

 

\bibitem{os18e}

H. Okumura and S. Saitoh,

Applications of the division by zero calculus to Wasan geometry.

GLOBAL JOURNAL OF ADVANCED RESEARCH ON CLASSICAL AND MODERN GEOMETRIES” (GJARCMG)(in press).

 

 

 

 

 

\bibitem{ps18}

S. Pinelas and S. Saitoh,

Division by zero calculus and differential equations. Differential and Difference Equations with Applications. Springer Proceedings in Mathematics \& Statistics. {\bf 230}  (2018), 399-418.

 

 

\bibitem{s14}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016),     151-182. (Springer)

 

\bibitem{s17}

S. Saitoh, Mysterious Properties of the Point at Infinity, arXiv:1712.09467 [math.GM](2017.12.17).

 

\bibitem{s18}

S. Saitoh, Division by Zero Calculus (Draft) (210 pages): http//okmr.yamatoblog.net/

 

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{a}

クリックして012001.pdfにアクセス

 

\bibitem{b}

http://publish.uwo.ca/~jbell/The 20Continuous.pdf

 

\bibitem{c}

http://www.mathpages.com/home/kmath526/kmath526.htm

 

 

\end{thebibliography}

 

\end{document}

 

2018.8.18.5:35 山口先生からメール頂く、長袖でも寒い朝、季節の変化に驚かされる。 良い、完成できるが。

完成、公表。

 

2018.8.20.06:03 完成、公表。

 

№862

15 8月
NEW !
テーマ:

№862

極座標で、接線の長さ、法線影の長さを表現する式です。 円の場合を考えれば分かりますように 分母がゼロになります。ゼロ除算で、それらは全てゼロと考えられるのですが、接線の長さは、特に興味深い 深い意味があります。

 

考えると堪らなく楽しくなります。

ゼロ除算は、とにかく 当たり前ですね。 今の 世界の常識は 間違っていて、現代数学は、基本的な欠陥が有りますね。それは、歴然です。 数学者、研究者は、大丈夫でしょうか?

 

The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-24Coordinator

http://www.meetingsint.com/conferences/appliedphysics-mathematicsApplied Physics and Mathematics Conference 2018
appliedphysics@annualmeetings.net

appliedphysics@meetingseries.org

The amount charged for E-Posters is to display the E-Posters only on websiteE-Posters

The abstract will be published in conference proceeding book

The presenter is not required to be present in person at the conference

_____________________________________________________________________

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Eulcid:

 

By the concept of the Moore-Penrose generalized solution of the fundamental equation $ax=b$, the division by zero was trivial and clear all as $b/0=0$ in the general fraction that is defined by the generalized solution of the equation $ax=b$.

Division by zero is trivial and clear from the concept of repeated subtraction – H. Michiwaki.

 

Recall the uniqueness theorem by S. Takahasi on the division by zero.

 

The simple field structure containing division by zero by M. Yamada.

 

Many applications of the division by zero to Wasan geometry by H. Okumura.

_____________________________________________________________________

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか

https://www.youtube.com/watch?v=iQld9cnDli4

 

〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか

https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s

 

NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

https://www.youtube.com/watch?v=KjvFdzhn7Dc

NHKスペシャル 神の数式 完全版 4 異次元宇宙は存在するか

https://www.youtube.com/watch?v=fWVv9puoTSs

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

 

 

 

\end{thebibliography}

 

\end{document}

 

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf

再生核研究所声明 445(2018.8.15): 平和を希求して ― How to

15 8月

再生核研究所声明 445(2018.8.15): 平和を希求して ― How to

 

平和を願っている、それにも関わらず世界史は戦争の歴史であると言われるように戦いが収まらず、続いている。どうしたら戦争を無くすことができるでしょうか。願いは有っても どのようにしたらの考察が世界的に足りないのではないだろうか。戦争を無くして 美しい世界を作るにはどうしたらよいか、考察したい。それにしても 世界に平和研究所があまりにも少ないのではないだろうか。

ところが世の人間関係の基本は 実は 簡単で 声明1の 次の公正の原則 にあると考えられる:

平成12年9月21日早朝,公正とは何かについて次のような考えがひらめいて目を覚ました.
1) 法律,規則,慣習,約束に合っているか.
2) 逆の立場に立ってみてそれは受け入れられるか.
3) それはみんなに受け入れられるか.
4) それは安定的に実現可能か.
これらの「公正の判定条件」の視点から一つの行為を確認して諒となればそれは公正といえる.

 

人びとがそれらを理解できる能力、意志を持てれば 実際世界の平和は意外に簡単で、世の中は相当に明るく、美しくなるのではないだろうか。そこで、ここではさらに平和の問題の考察を深めたい。もちろん、歴史が示しているように難しい問題であるが、まずは 人は 道理を理解できる素養をもつことが大事ではないだろうか。相互理解、対話にも 共通の言語、道理が 必要である。世には道理、秩序が存在することを学ぶには 数学の教育や物理学の基礎の学習は 非常に 大事ではないだろうか。それらは、人間を越えて 共通の言語になり得る。嘘をついたり、だましたり、強い自己中心や仲間優先、えこひいき、身勝手、弱肉強食、などが横行すれば、世界は地獄と変わらない野蛮な世界に逆戻りしてしまう。

世界を見れば、微妙なバランスこそ 大事で、共感、共鳴、共生の精神こそ 大事ではないだろうか、本来の人間の喜びや感動、生きて居る意味もその辺から湧いていることに気づくだろう。生命は 同じ哀しい運命を生きて居る はかない存在であることを知ることも、共感、共鳴の素になるのではないだろうか。

これらはもっともなことであるが、平和の具体的な問題は 国家間の争いである。

誰でもどこの国でも自国の安全と秩序は 国家の重要事項である。そこで、ひとり自国の安全保障のためとして軍備増長を図れば、必ず相手国も反作用で軍備増長を強め、軍拡が自国の平和に有効とは言い切れず、反って危うくする危険性があるのではないだろうか。それも膨大な犠牲を払い、相手にも犠牲を強いてである。 それゆえに自己中心の安全構想は慎重に行う必要がある。専守防衛を掲げて努力することは 当面は賢明な在りようではないだろうか。人類 は軍拡競争で自滅した愚かな生物であった、地球のがん細胞的な存在であったとはなりたくはない。

作用、反作用の法則をしっかりと理解したい。

戦争の原因が時の権力者の権力維持や過てる政策の結果 大義のない無意味な闘争に明け暮れていたのは、国家権力が確立する以前に相当広く行われてきた現実で世界的にあり、権力闘争の結果の戦争は 実は多い。そこで、どうしたら、良き権力者を選出できるかは、今後の重要な課題ではないだろうか。民主主義国家では選挙の問題、過程が問題として問われるが、国民投票によらない、自由な意思表示ができないような国家では、大きな根本的な問題が存在する。そのような国家では、国民は盲目的に従わなければならない体制になっているからである。しかしながら、国家をささえるのは 国民の総体であるから、国民の自覚と平和を希求する努力が大事ではないだろうか。

以 上2018.8.13.15.14

2018.8.13.16:45

2018.8.13.18:29 3日続けて夕立。 小鳥たちが沢山。

2018.8.13.22:14 良い。

2018.8.14.05:29 良い。 涼しい虫の鳴く朝。

2018.8.14.11:20 良い、盛夏、異常に暑い夏の復活。

2018.8.14.14:30 良い。

2018.8.14.22:17 良い。すっかり涼しくなる。

2018.8.15.05;10 良い完成できる。鈴虫、すっかり秋の感じ、ひんやりの朝。

2018.8.15.05:30 完成、公表。

№ 861

13 8月
NEW !
テーマ:

№ 861

角速度一定で運動したとき、 楕円の左端で、接線の勾配は、ゼロとゼロ除算は言っています。

右端も同じです。

 

従来は無限大と考えられてきましたが、本当はその表現には なんとなく変な曖昧さが有るのでは ないでしょうか。

 

この新しい考え方は大きな影響が 出てきます。

空間の考えがユークリッド以来変更が必要であり、解析学にも大きな変更が要求されます。

The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-24Coordinator

http://www.meetingsint.com/conferences/appliedphysics-mathematicsApplied Physics and Mathematics Conference 2018
appliedphysics@annualmeetings.net

appliedphysics@meetingseries.org

The amount charged for E-Posters is to display the E-Posters only on websiteE-Posters

The abstract will be published in conference proceeding book

The presenter is not required to be present in person at the conference

_____________________________________________________________________

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Eulcid:

 

By the concept of the Moore-Penrose generalized solution of the fundamental equation $ax=b$, the division by zero was trivial and clear all as $b/0=0$ in the general fraction that is defined by the generalized solution of the equation $ax=b$.

Division by zero is trivial and clear from the concept of repeated subtraction – H. Michiwaki.

 

Recall the uniqueness theorem by S. Takahasi on the division by zero.

 

The simple field structure containing division by zero by M. Yamada.

 

Many applications of the division by zero to Wasan geometry by H. Okumura.

_____________________________________________________________________

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか

https://www.youtube.com/watch?v=iQld9cnDli4

 

〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか

https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s

 

NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

https://www.youtube.com/watch?v=KjvFdzhn7Dc

NHKスペシャル 神の数式 完全版 4 異次元宇宙は存在するか

https://www.youtube.com/watch?v=fWVv9puoTSs

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

 

 

 

\end{thebibliography}

 

\end{document}

 

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf

 

再生核研究所声明 443(2018.8.13):  アリストテレス以来、二千年を越える封印、タブーの解消 - ゼロ除算

13 8月

再生核研究所声明 443(2018.8.13):  アリストテレス以来、二千年を越える封印、タブーの解消 - ゼロ除算

 

一般向きにゼロ除算の解説を 4年間を越えて続けている:

数学基礎学力研究会 サイト:

http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える。

しかるに 2018.8.11.11:20 突然に全体の構想が湧いてきた。 そこで、できるだけその忠実な表現を試みたい。 その主旨は 声明の題名の通りであるが、その説明を述べたい。

ゼロで割る問題、ゼロ除算は歴史家の分析によれば、最初に考えたのはアリストテレスで、物理的な意味から真空の比、ゼロ除算は不可能であると述べ その後の西欧文化に大きな影響を与えたと言う。狭義ではゼロの発見と算術の発見者Brahmagupta (598 -668 ?)がゼロ除算0/0 を考え、その後1300年を越えて、ゼロ除算は議論されてきたが、 現在でも未明の状態と考えられる。ゼロ除算は2014.2.2発見されて論文などにも公表されているが、そのあまりにも永い歴史のゆえに 中々認知されない状況が続いている。それが殆ど当たり前のことなのに、拒否、受け入れられない状況が続いている。最近も誤解を解消すべく解説をしている:

再生核研究所声明 434 (2018.7.28) :  ゼロ除算の誤解と注意点

再生核研究所声明 437 (2018.7.30) :  ゼロ除算とは何か - 全く新しい数学、新世界である

再生核研究所声明 438(2018.8.6):  ゼロ除算1/0=0/0=z/0=\tan(\pi/2)=0 の誤解について

そこで、タブーの理由を考察して置きたい。ゼロ除算の結果を複数のヨーロッパの数学者に直接話したときに、アリストテレスの名前をあげて、異様に感情むき出しで拒否されたのは 強力な体験である。表情をサッと変えられた方も結構居た。そのような話しは聞きたくないという強い意志表示であるから、単に数学の話しをしているようには 感じられないものである。それも20年来の友人たちの間での出来事である。背後には永く深いギリシャ文化の影響、無やゼロ、空を嫌う文化背景、無神論を発想しているような 深い拒否反応である。 日本でもゼロで割ってはいけないは永い伝統であるから 受け入れられないは あるが、ゼロについての不愉快な気持ちは 零点や消えること、無くなることなど 不愉快な気持ちが強いようである。

数学的には 簡単にゼロ除算は不可能であることが証明されてしまう事実と共に1/0 は 無限大のようなものであるとの確信が深いためであろう。それがゼロであると言われて天地が ひっくり変える様な驚きを感じるだろう。実際、基本的な関数y=1/x を考えて、xが小さく成っていく時、yの値がどんどん大きく発散している様子を思い浮かべるだろう。アリストテレスの世界観 連続性に反するので、そのような突飛なことは認められないと考えられてきた。そこで、ゼロ除算は 有る意味では神秘的な対象 になってしまう。実際ゼロ除算は、神秘的な問題と考えられてきた。

現在でも、インターネットの世界でもそのような扱いになっている。

永いタブーの理由は、無、ゼロ、空などの忌み嫌う感情、世の連続性に拘るギリシャ文化の強い影響、数学的に明解な 不可能であることの証明 があるためではないだろうか。実際には、最も簡単な方程式 ax =b の解として、分数b/a, 割り算を考えれば、有名なMoore-Penrose一般逆で 解は何時でも一意に存在して 1/0=0 であることは相当に基本的な考えて ゼロ除算は当たり前の周知の筈と考えられるが、上記の永い伝統、思い込みで それらは受け入れられず、沢山の意味付けや例を示されても、中々理解されない状況が続いていると考えられる。しかしながら、ゼロ除算は発見後3週間くらいで、ゼロ除算は割り算の意味から当たり前であるとの道脇親娘(当時6歳)の言明は誠に興味深い。

以 上

2018.8.11.15:34

2018.8.11.18:44 既に良い。

2018.8.11.22:05 2日続けて激しい夕立、季節の変化を感じる。秋の予感。

2018.8.12.05:47 良い、2日続けて激しい夕立、川のせせらぎが心地良い。

2018.8.12.11:24 良い、本質が簡潔に述べられている。

2018.8.12.14:56 良い、できている。

2018.8.13.05:40 これはこれで良い。3日続けて夕立、秋の到来を速めている。

2018.8.13.05:52 完成、公表。田舎では独自の風情のある特別な日々になる。感慨深い。

 

№860

12 8月
NEW !
テーマ:

№860

両辺をゼロで割ってはいけないとされていますが、もちろん何でもやっても良いとは なりません。美しい数学の世界では、きちんと道理が存在して 其の道理は 何千年と変わらず数学の論理は 人類の最も頼りなる 言語ではないでしょうか。

図の様にすれば、 方程式の両辺を ゼロで割っても 良いですね。ゼロで割れます。

方程式にゼロを掛ければゼロで意味が有りますが、ゼロで割っても 同様に意味が有りますね。

The International Conference on Applied Physics and Mathematics, Tokyo, Japan, October 22-24Coordinator

http://www.meetingsint.com/conferences/appliedphysics-mathematicsApplied Physics and Mathematics Conference 2018
appliedphysics@annualmeetings.net

appliedphysics@meetingseries.org

The amount charged for E-Posters is to display the E-Posters only on websiteE-Posters

The abstract will be published in conference proceeding book

The presenter is not required to be present in person at the conference

_____________________________________________________________________

Close the mysterious and long history of division by zero and open the new world since Aristotelēs-Eulcid:

 

By the concept of the Moore-Penrose generalized solution of the fundamental equation $ax=b$, the division by zero was trivial and clear all as $b/0=0$ in the general fraction that is defined by the generalized solution of the equation $ax=b$.

Division by zero is trivial and clear from the concept of repeated subtraction – H. Michiwaki.

 

Recall the uniqueness theorem by S. Takahasi on the division by zero.

 

The simple field structure containing division by zero by M. Yamada.

 

Many applications of the division by zero to Wasan geometry by H. Okumura.

_____________________________________________________________________

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

私は数学を信じない。 アルバート・アインシュタイン / I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

ドキュメンタリー 2017: 神の数式 第2回 宇宙はなぜ生まれたのか

https://www.youtube.com/watch?v=iQld9cnDli4

 

〔NHKスペシャル〕神の数式 完全版 第3回 宇宙はなぜ始まったのか

https://www.youtube.com/watch?v=DvyAB8yTSjs&t=3318s

 

NHKスペシャル〕神の数式 完全版 第1回 この世は何からできているのか

https://www.youtube.com/watch?v=KjvFdzhn7Dc

NHKスペシャル 神の数式 完全版 4 異次元宇宙は存在するか

https://www.youtube.com/watch?v=fWVv9puoTSs

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

 

 

 

\end{thebibliography}

 

\end{document}

 

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces
Author: Jakub Czajko, 92(2) (2018) 171-197
https://img-proxy.blog-video.jp/images?url=http%3A%2F%2Fwww.worldscientificnews.com%2Fwp-content%2Fplugins%2Ffiletype-icons%2Ficons%2F16%2Ffile_extension_pdf.pngWSN 92(2) (2018) 171-197

http://www.worldscientificnews.com/wp-content/uploads/2017/12/WSN-922-2018-171-197.pdf