アーカイブ | 11月, 2016
画像

№236-574: 凹面鏡の像は 平面鏡を境に強力な不連続性を示し、ゼロ除算の物理的な意味を正当化している: The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

28 11月

img574

再生核研究所声明335(2016.11.28)  ゼロ除算における状況

28 11月

再生核研究所声明335(2016.11.28)  ゼロ除算における状況

ゼロ除算における状況をニュース方式に纏めて置きたい。まず、大局は:

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド幾何学とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。

1.ゼロ除算未定義、不可能性は 割り算の意味の自然な拡張で、ゼロで割ることは、ゼロ除算は可能で、任意の複素数zに対してz/0=0であること。もちろん、普通の分数の意味ではないことは 当然である。ところが、数学や物理学などの多くの公式における分数は、拡張された分数の意味を有していることが認められた。ゼロ除算を含む、四則演算が何時でも自由に出来る簡単な体の構造、山田体が確立されている。ゼロ除算の結果の一意性も 充分広い世界で確立されている。

2.いわゆる複素解析学で複素平面の立体射影における無限遠点は1/0=0で、無限ではなくて複素数0で表されること。

  • 円に関する中心の鏡像は古典的な結果、無限遠点ではなくて、実は中心それ自身であること。球についても同様である。
  • 孤立特異点で 解析関数は有限確定値をとること。その値が大事な意味を有する。ゼロ除算算法。
  • x,y 直交座標系で y軸の勾配は未定とされているが、実はゼロであること; \tan (\pi/2) =0. ― ゼロ除算算法の典型的な例。
  • 直線や平面には、原点を加えて考えるべきこと。平行線は原点を共有する。原点は、直線や平面の中心であること。この議論では座標系を固定して考えることが大事である。
  • 無限遠点に関係する図形や公式の変更。ユークリッド空間の構造の変更、修正。
  • 接線法線の考えに新しい知見。曲率についての定義のある変更。
  • ゼロ除算算法の導入。分母がゼロになる場合にも、分子がゼロでなくても、ゼロになっても、そこで意味のある世界。いろいろ基本的な応用がある。

10.従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていたこと。微分に関する多くの公式の変更。

11.微分方程式の特異点についての新しい知見、特異点で微分方程式を満たしているという知見。極で値を有することと、微分係数が意味をもつことからそのような概念が生れる。

12.図形の破壊現象の統一的な説明。例えば半径無限の円(半平面)の面積は、実はゼロだった。

13.確定された数としての無限大、無限は排斥されるべきこと。

14.ゼロ除算による空間、幾何学、世界の構造の統一的な説明。物理学などへの応用。

15.解析関数が自然境界を超えた点で定まっている新しい現象が確認された。

16.領域上で定義される領域関数を空間次元で微分するという考えが現れた。

17.コーシー主値やアダマール有限部分に対する解釈がゼロ除算算法で発見された。

18.log 0=0、 及び e^0 が2つの値1,0 を取ることなど。初等関数で、新しい値が発見された。

 

資料:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007

http://www.ijapm.org/show-63-504-1.html

クリックして9.pdfにアクセス

*156  Qian,T./Rodino,L.(eds.):

Mathematical Analysis, Probability and

Applications -Plenary Lectures: Isaac 2015, Macau, China.

(Springer Proceedings in Mathematics and Statistics, Vol. 177)

Sep. 2016   305 pp.

(Springer)     9783319419435   25,370.

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

数学基礎学力研究会のホームページ

URLは

http://www.mirun.sctv.jp/~suugaku堪らなく楽しい数学-ゼロで割ることを考える

以 上

 

2016.11.25.10:55

2016.11.25.15:26

2016.11.25.16:54

2016.11.25.06:18 晴天の朝。

2016.11.26.10:30

2016.11.26.15:06 午後遅く、日差しが差す。

2016.11.27.06:04 曇り。

2016.11.27.11:33 午前中 大沢先生の本 を通読する、凄い。

2016.11.27.16:13 小雨

2016.11.27.19:25

2016.11.27.21:14 小雨。

2016.11.28.06:02 快晴。

2016.11.28.06:42 誤解に満ちたメールを受けとり、回答素案を作成;完成、公表。

234と235

27 11月
2016年11月27日(日)NEW !
テーマ:

№234-571:

これは、相当に、ゼロ除算 1/0=0 を示しているのでは?

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

Announcement 326: The division by zero z/0=0z/0=0 – its impact to human beings through education and research

№235-572:

これは、想像上のことですが、直線では、 波を起こすことができない事を示しているのでは?

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

Announcement 326: The division by zero z/0=0z/0=0 – its impact to human beings through education and research

再生核研究所声明316(2016.08.19) ゼロ除算における誤解

 

(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)

 

6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。

まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。

先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。

一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。

ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。

また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。

次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 – 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。

ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。

具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。

ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:

再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

 

再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

 

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。

そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。

先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。

反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。

いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。

大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。

複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。

ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。

以 上

追記:

(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58.

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007

http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdfDOI:10.12732/ijam.v27i2.9.

 

再生核研究所声明325(2016.10.14) 

ゼロ除算の状況について ー 研究・教育活動への参加を求めて

アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。

そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、ゼロ除算の教育、研究は日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の協力、参加をお願いしたい。

先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。数学はより美しく、完全であった。さらに、数学の奥深い世界を示している。ゼロ除算を含む体の構造、山田体が確立している。その考えは、殆ど当たり前の従来の演算の修正であるが、分数における考え方に新規で重要、面白い、概念がある。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童・生徒たちにも歓迎されるだろう。

反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。応用する。

いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直交座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。三角関数や初等関数でも考え方を修正、補充する。直線とは、そもそも、従来の直線に原点を加えたもので、平行線の公理は実は成り立たず、我々の世界は、ユークリッド空間でも、いわゆる非ユークリッド幾何学でもない、新しい空間である。原点は、あらゆる直線の中心になっている。

大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の発展の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し ― ゼロ除算算法、広範な応用を展開する。最も顕著な例は、tan 90度 の値がゼロであることで、いろいろ幾何学的な説明は、我々の空間の認識を変えるのに教育的で楽しい題材である。特に微分係数が正や負の無限大に収束(発散)する時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。新しい、関数の素性が見えてくる。

複素解析学において 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点自身では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学的な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円に関する鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考え方の修正は、ユークリッド以来、我々の空間に対する認識の世界史上における大きな変更であり、数学を越えた世界観の変更を意味している。これはアリストテレスの世界の連続性の概念を変えるもので強力な不連続性を示している。 ― この文脈では天動説が地動説に変わった歴史上の事件が想起される。

ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。

地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える。

以 上

追記:

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007

http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf DOI:10.12732/ijam.v27i2.9.

*156  Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and

Applications -Plenary Lectures: Isaac 2015, Macau, China.

(Springer Proceedings in Mathematics and Statistics, Vol. 177)  Sep. 2016 305 pp.            (Springer)

Paper:Division by Zero z/0 = 0 in Euclidean Spaces

Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.

Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017),

数学基礎学力研究会のホームページ

URL

http://www.mirun.sctv.jp/~suugaku

 

再生核研究所声明331(2016.11.04) 

提案 ― ゼロ除算の研究は、学部卒論や修士論文の題材に適切

 

(雨上がり 山間部の散歩で考えが湧いた。ゼロ除算の下記論文は、新しい数学の研究課題で、学部4年生の卒論ゼミの課題、修士論文の研究課題に適切である:

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007

http://www.ijapm.org/show-63-504-1.html

クリックして9.pdfにアクセス

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China. (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016        305 pp. (Springer) 

Paper:Division by Zero z/0 = 0 in Euclidean Spaces

Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.

Now, we inform you that your paper is accepted for next issue of International Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017),

数学基礎学力研究会のホームページ

URL

http://www.mirun.sctv.jp/~suugaku)。

簡単に理由を纏めて置きたい。

1) 基礎知識が学部3年生程度で十分で、基本的な結果を議論でき、新しい結果を導ける余地が十分に存在する。新規で、多くの人が興味を持つ課題で国際的にも広く交流できる。

2) 内容は、永い歴史を有する世界史の問題に関わり、空間の考え、勾配、微分、接線、連続性、無限など数学の基礎概念に関与している。相対性理論、ブラックホール、ビッグバン、計算機障害などにも関係している。

3) もともと歴史的な大問題で、ゼロ除算として永い歴史と文化に関わり、広い視点が発展中の生きた数学の中に持てる。

4) 論理には厳格性、精密性、創造性が要求され、数学の精神の涵養に適切である。予断と偏見、思い込みの深さなどについて人間を知ることが出来る。

5) 基礎数学の広範な修正構想に参画でき、物理学など広い研究課題への応用が展望でき、ゼロ除算算法のような新規で基礎数学の新しい手段を身に付けることが出来る。

6) 現在数学は高度化、細分化して、永い学習期間を経て創造的な仕事に取り掛かれるのが普通であるが、ゼロ除算の研究課題では初期段階から、新しい先端の研究に取り掛かれる基礎的な広い研究領域が存在する。ゼロ除算の研究課題は、世にも稀なる夢のある研究課題であると考えられる。― アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる(再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)。

 

偉大なる研究は 2段階の発展でなされる という考えによれば、ゼロ除算には何か画期的な発見が大いに期待できるのではないだろうか。 その意味では 天才や超秀才による本格的な研究が期待される。純粋数学として、新しい空間の意義、ワープ現象の解明が、さらには相対性理論との関係、ゼロ除算計算機障害問題の回避など、本質的で重要な問題が存在する。 他方、新しい空間について、ユークリッド幾何学の見直し、世のいろいろな現象におけるゼロ除算の発見など、数学愛好者の趣味の研究にも良いのではないだろうか。 ゼロ除算の研究課題は、理系の多くの人が驚いて楽しめる普遍的な課題で、論文は多くの人に愛される論文と考えられる。

 

以 上

№232-569

26 11月

№232-569

剛体の打擊の中心ですが、 重心のとき、打撃の中心は 重心そのものと考えるのが 妥当ではないでしょうか。確定の無限大は 存在しませんね。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

 

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\

}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.

\bigskip

\section{Introduction}

%\label{sect1}

By a natural extension of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}.

The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,

Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:

\bigskip

{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

\medskip

\section{What are the fractions $ b/a$?}

For many mathematicians, the division $b/a$ will be considered as the inverse of product;

that is, the fraction

\begin{equation}

\frac{b}{a}

\end{equation}

is defined as the solution of the equation

\begin{equation}

a\cdot x= b.

\end{equation}

The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:

As a typical example of the division by zero, we shall recall the fundamental law by Newton:

\begin{equation}

F = G \frac{m_1 m_2}{r^2}

\end{equation}

for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,

\begin{equation}

\lim_{r \to +0} F =\infty,

\end{equation}

however, in our fraction

\begin{equation}

F = G \frac{m_1 m_2}{0} = 0.

\end{equation}

\medskip

 

 

Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).

In Japanese language for “division”, there exists such a concept independently of product.

H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:

$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.

Her understanding is reasonable and may be acceptable:

$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.

$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.

$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.

Furthermore, she said then the rest is 100; that is, mathematically;

$$

100 = 0\cdot 0 + 100.

$$

Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?

\medskip

For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:

The first principle, for example, for $100/2 $ we shall consider it as follows:

$$

100-2-2-2-,…,-2.

$$

How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.

The second case, for example, for $3/2$ we shall consider it as follows:

$$

3 – 2 = 1

$$

and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,

then we consider similarly as follows:

$$

10-2-2-2-2-2=0.

$$

Therefore $10/2=5$ and so we define as follows:

$$

\frac{3}{2} =1 + 0.5 = 1.5.

$$

By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.

Now, we shall consider the zero division, for example, $100/0$. Since

$$

100 – 0 = 100,

$$

that is, by the subtraction $100 – 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,

$$

\frac{100}{0} = 0.

$$

We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.

Similarly, we can see that

$$

\frac{0}{0} =0.

$$

As a conclusion, we should define the zero divison as, for any $b$

$$

\frac{b}{0} =0.

$$

See \cite{kmsy} for the details.

\medskip

 

\section{In complex analysis}

We thus should consider, for any complex number $b$, as (1.2);

that is, for the mapping

\begin{equation}

w = \frac{1}{z},

\end{equation}

the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.

However, we shall recall the elementary function

\begin{equation}

W(z) = \exp \frac{1}{z}

\end{equation}

$$

= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .

$$

The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:

\begin{equation}

W(0) = 1.

\end{equation}

{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?

In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.

As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).

\bigskip

\section{Conclusion}

The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.

The result does not contradict with the present mathematics – however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.

The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.

Should we teach the beautiful fact, widely?:

For the elementary graph of the fundamental function

$$

y = f(x) = \frac{1}{x},

$$

$$

f(0) = 0.

$$

The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).

\medskip

If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.

\bigskip

 

 

section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  –  by a natural extension of fractions — A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics – shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division – The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}

 

アインシュタインも解決できなかった「ゼロで割る」問題

http://matome.naver.jp/odai/2135710882669605901

 

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

https://notevenpast.org/dividing-nothing/

 

私は数学を信じない。 アルバート・アインシュタイン /

I don’t believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。

1423793753.460.341866474681

 

Einstein’s Only Mistake: Division by Zero

http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html

img569

№231-568

26 11月

№231-568

 

円上の弦の交点は、複素数を用いると美しい表現で表されますが、 平行になる時は、ゼロ除算1/0=0 で交点はゼロとするのが良い。

それは、全ての直線が原点を含むことから自明です。

ここで、3点を固定して1点を動かして、 ゼロ除算算法で求めると、不思議な量が現れてきます。

ここには未知の世界が存在する。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/ alamt   http://dx.doi.org/10.4236/ alamt.2016.62007
http://www.ijapm.org/show-63- 504-1.html
http://www.diogenes.bg/ijam/ contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/ division%20by%20zero/ announcement%20326-%20the% 20divi

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 326:   The division by zero z/0=0 – its impact to human beings through education and research\\

(2016.10.17)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628,  however,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We should define $F(b,0)= b/0 =0$, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impact to complex analysis and to our ideas for the space and universe.

 

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:

1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impact  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impact to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

(1): First, we should declare that the divison by zero is possible in the natural and uniquley determined sense and its importance.

 

(2): In the elementary school, we should introduce the concept of division by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithmu and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of steleographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, the point at infinity is represented by zero. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinates should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is trivial in the definition of the Yamada field. This result is derived also from  the {\bf division by zero calculus}:

\medskip

 

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

 

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.6) and (2.7). At  $x = 0$, we  see that we can not consider the limit in the sense (2.3).  However,  for $x >0$ we have (2.6) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

We will consider the fundamental ordinary differential equations

 

\begin{equation}

x^{\prime \prime}(t) =g -kx^{\prime}(t)

\end{equation}

with the initial conditions

\begin{equation}

x(0)  = -h, x^{\prime}(0) =0.

\end{equation}

Then we have the solution

\begin{equation}

x(t) = \frac{g}{k}t + \frac{g(e^{-kt}- 1)}{k^2} – h.

\end{equation}

Then, for $k=0$, we obtain, immediately, by the division by zero

\begin{equation}

x(t) = \frac{1}{2}g t^2 -h.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hôpital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems.

 

\section{General  ideas on the universe}

The division by zero may be related to religion,  philosophy and the ideas on the universe, and it will creat a new world. Look the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6, 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation

(in press).

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

 

\end{thebibliography}

 

\end{document}

img568

再生核研究所声明334(2016.11.25)  数理科学に興味を懷く方、発見に興味を持つ方 ― お願い

25 11月

再生核研究所声明334(2016.11.25)  数理科学に興味を懷く方、発見に興味を持つ方 ― お願い

ゼロ除算1/0=0/0=z/0=0は拡張された分数の意味で、数学的に厳密に 確立され 既に自明ですが、物理などに現れる公式において、分数で分母がゼロになるとき、ゼロ除算の結果が自然に成り立っている場合が沢山発見されました。これは、物理学などに現れる分数には このように拡張された意味での分数になっているという意味で、自然を表現する物理学は、賢いと表現できます。― 物理学などで、多くの場合、拡張された意味での分数を表していたということです。― 数学では禁じられたこと、不可能性に最初に遭遇することとされてきた。
そこで、世に現れる多くの公式について、ゼロ除算の結果が成り立っているか、検証、吟味を行いたいと考えて、素人としていろいろ検討を始めていますが、大体200件の具体的な検討を行いました。世に分数で表現される公式は実に多いので、いろいろな方にそれぞれの専門分野や興味ある分野、関心のあるところで、分数におけるゼロ除算の状況を検討して頂ければ誠に幸いです。楽しい現象を発見できれば、大いに楽しめるのではないでしょうか。

具体例について 下記メールにて 連絡して頂ければ幸いです:

kbdmm360@yahoo.co.jp,  再生核研究所

ゼロ除算の注意をして置きます。 分子、分母が独立の時には、上記のように結果が述べられますが、分子、分母に関係がある場合には、いろいろな考え方が有って、結果は一意には一般には定まりませんが、一番有効な考え方は 次のようなゼロ除算算法です:

For any formal Laurent expansion around z=a,

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

we obtain the identity, by the division by zero

f(a) = C_0.

Note that here, there is no problem on any convergence of the expansion at the point z = a. (Here, as convention, we consider 0^0=1.)

We note that:

If a point a is a pole of order n of an analytic function f(z) and we set g(z)=(z – a)^{n}f(z), then

f(a)=\frac{1}{n!}g^{(n)}(a).

We give examples.

If f(z)=\frac{e^{z}}{\left(z-1\right)^{3}}, then g(z) =e^{z} and n=3. So we have

f(1)=\frac{e}{3!}.

If f(z)=\frac{\log z}{\left(z-1\right)^{n}}, where n>1, then g(z) = \log z, and

f(1)=\left(-1\right)^{n-1}\frac{1}{n}.

最も典型的な例は tan 90度が0であることで、大きな影響がある。
以 上

追記:
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

クリックして9.pdfにアクセス

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
○ 堪らなく楽しい数学-ゼロで割ることを考える(28)

2016.11.22.16:18
2016.11.22.16:34
2016.11.22.19:30
2016.11.22.21:18
2016.11.23.06:27
2016.11.23.13:53
2016.11.23.19:41
2016.11.23.21:53
2016.11.24.09:10 雪、そこで早めに買い物に出かける。
2016.11.24.13:44 買い物、帰って雪道の散歩。
2016.11.24.19:46 雪、大したことなくあがる。
2016.11.24.21:40
2016.11.25.06:07 快晴の朝。
2016.11.25.06:17 完成、公表。

 

№230-567:

24 11月

№230-567:

img567

曲率、曲率半径、ゼロ除算の間に美しい関係がある事が分かる。

ちょっと夢中になりすぎで、誤解していないか と心配です。

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

 

№229-566:

24 11月

№229-566:

基本的なことは 一度発見されると、至るところに発見されて 当たり前になりますね。

自然は 拡張された、分数、ゼロ除算を含む数体系で 世界を表現していると言えます:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20diviimg566

再生核研究所声明333(2016.11.24)  男と女の関係について

24 11月

再生核研究所声明333(2016.11.24)  男と女の関係について

神は2を愛し給う(2.13 (参考資料) 神は「2」を愛し給う ― 良い社会のために―よっちゃんの想い―For Good World再生核研究所代表 齋藤尚徳 編著2008年3月20日)で述べているように二元論の世界観を深く感じ、数学ばかりではなく、二元を言わば神の意志として感得してきたが、当然、人をなす、男女の関係についてもいろいろな観点から触れてきた:

 

再生核研究所声明 36 恋の原理と心得

再生核研究所声明 124 (2013.8.20) 恋の機微 - 恋の極意

再生核研究所声明146(2013.12.17) 愛の本質、愛の原理

再生核研究所声明159(2014.5.28) 恋する男女は強い - 何故か?

再生核研究所声明164(2014.6.18) 男と女の関係の捉え方 ― 新しい視点

再生核研究所声明206(2015.2.12) 女性の生態、主婦の生態

再生核研究所声明207(2015.2.13) 男性の生態、亭主の生態

再生核研究所声明238(2015.6.20) 西行花伝 ― 辻邦生、新潮社を読んで – 西行の恋と愛

そこで、改めて、男女の関係について、触れてみたい。

円熟期から、さかのぼる形で、思いのままに回想する形で記述したい。

退職などして、自由な時間が多く取れるようになると、男性は、世話を受ける立場の関係が強くなり、特に食事の世話の大きな役割にまるで飼われているように感じられることが多い。このようなとき、料理好きで、料理の上手い伴侶は誠に有難いと感じるだろう。そのような状況における男女の関係とは女性は生活を整えるのが大部分で、ゆとりを見出して趣味を楽しみ、家族を養う感じの生活になるだろう。男性は言わば志の延長、完成を志向するが、全人生についての省察を繰り返す生活になるだろう。また良い趣味を活かして熟年期を楽しむ人や宗教に真面目に、向かう方もあらわれる。退職後疲れが出たかのように 言わば抜け殻のような存在の男性も多いのではないかと気がかりである。ますます人間らしい存在に高まりたいものである。

永い現役時代は、男性が生活を支えていれば、志、言わば、人生の目標に向かって集中し、仕事のことが生活の大部分を占め、伴侶が主婦専業ならば夫の仕事を意識して、協力、協力の精神が大きな比重を占めるのではないだろうか。また子供がいれば、それと劣らない大きな仕事が育児や子供の教育である。これらが本質的で、人生の大部分を占めていると言える。子供が居なければ主婦はそれだけ自由な時間を言わば趣味の時間に掛けることになる。近年所謂共稼ぎ夫婦が増加しているが、特に育児と仕事の両立は相当に厳しい生活になるのではないだろうか。恩師から かつて家の中に女性が一人いて 安(心)と書くと教えて頂いたが、同感してしまう。

― いずれにせよ本質的には動物の生態と人間の生態も変わらないということである。一般には男性に志がなければ、女性は一般には動物の存在に近く、それだけ安定している存在であると言える。本能で活動する動物はある意味で、完全な存在であると言える。

それ以前となれば、新婚時代、恋愛中・交際中と直接付き合いのない 言わば、永い片思いの時代である。この辺が世の小説の主題になる事は多い。

新婚時代は華やいだ人生の時期であるが、男女ともお互いに神秘的な存在であるからお互いに知る新鮮な感覚で、生命力の輝く時代であると言える。

恋愛中・交際中 これは世の多くの小説の題材であるから、詳しく触れるより、象徴的な様子として大きな2つの世界の接近で、一緒にいないと落ち着かない心理状況、一緒に居るときには閉じた永遠に安定した世界のように感じられるだろう。これは2つで1つの二元論そのもので、2つの磁石がくっついている状態と言えるだろう。特に知り合う初期の重要性を改めて触れておきたい。 ある程度進めば、あとは自然な成り行きで進むが二人の運命、未来は その初めに掛かっていると言えるのではないだろうか。上記声明の中で、相当深く触れていると考える。― 初期段階、初めの重要性。― 多くのことがそうではないだろうか。

永い片思いの時代。 これは相当に子供の頃から抱く自然な感情で、心自体が異性の存在を直感して、それは漠然と未知の存在に対する憧れと表現できるだろう。淋しさも喜びも強い影響を受けるほど深いものであると言える。性と心の微妙な関係は神秘的であると表現するしか表現できないのではないだろうか。性に目覚めるころ、恋心が 湧く頃 である。予感に生命の息吹を 人生における大きな魅力的な夢を感じるだろう。

この声明で表現したかったこと、それば晩年の男女関係で、個人的な状況を触れているが、相当に標準的な様子ではないだろうか。― この声明に何か価値があるだろうかと検討したい。

以 上

 

2016.11.22.06:42 昨夜書き始める。先ほど永めの地震がある。この種の表現は何か難しさを感じる。

2016.11.22.21:31 少し検討したが、次の声明で保存を間違いて消してしまう。

2016.11.23.05:52 快晴、予報はそれほど良くない。もともと雨だった。

2016.11.23.10:00

2016.11.23.13:45

2016.11.23.19:34

2016.11.23.21:47 明日、雪の予報が出ている。

2016.11.24.06:48 雪の予想に反して、小降りの雨。ゼロ除算の情報が入る。完成、公表。

 

№228-565:

23 11月

№228-565:

ゼロ除算が、有名な 曲線論の基本公式  Frenet-Serret Formula  に、 意味をもって ちょうど成り立っているのは、 夢のような事件では?

自然は ゼロ除算を自然なものとしている。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 326:   The division by zero z/0=0 – its impact to human beings through education and research\\

(2016.10.17)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628,  however,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We should define $F(b,0)= b/0 =0$, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impact to complex analysis and to our ideas for the space and universe.

 

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:

1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impact  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impact to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

(1): First, we should declare that the divison by zero is possible in the natural and uniquley determined sense and its importance.

 

(2): In the elementary school, we should introduce the concept of division by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithmu and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of steleographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, the point at infinity is represented by zero. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinates should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is trivial in the definition of the Yamada field. This result is derived also from  the {\bf division by zero calculus}:

\medskip

 

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

 

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.6) and (2.7). At  $x = 0$, we  see that we can not consider the limit in the sense (2.3).  However,  for $x >0$ we have (2.6) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

We will consider the fundamental ordinary differential equations

 

\begin{equation}

x^{\prime \prime}(t) =g -kx^{\prime}(t)

\end{equation}

with the initial conditions

\begin{equation}

x(0)  = -h, x^{\prime}(0) =0.

\end{equation}

Then we have the solution

\begin{equation}

x(t) = \frac{g}{k}t + \frac{g(e^{-kt}- 1)}{k^2} – h.

\end{equation}

Then, for $k=0$, we obtain, immediately, by the division by zero

\begin{equation}

x(t) = \frac{1}{2}g t^2 -h.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hôpital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems.

 

\section{General  ideas on the universe}

The division by zero may be related to religion,  philosophy and the ideas on the universe, and it will creat a new world. Look the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6, 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation

(in press).

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

 

\end{thebibliography}img565