アーカイブ | 9月, 2017

再生核研究所声明 383 (2017.9.18):  人間の精神の高まりについての視点

18 9月

再生核研究所声明 383 (2017.9.18)  人間の精神の高まりについての視点

 

題名の正確な意味の表現は難しい。そこで、具体的な例を挙げて意図していることをより明らかにしよう。

小学生時代を回想しよう。 低学年ではどんどん世界が広がっていくようで、知識も情報も世界も段々、どんどん広がりどんどん世界が見えるようになっていくと感じられるだろう。 それと同時に 過去の自分の様、様子が良く見える、分かる様に感じられるだろう。 このような現象は、登山でどんどん登って行くと視野が開けて、辿ってきた様、情景がすっかり見え全体の様子が分かるような経験にもみられる。このような事は旅行で ある小さな町を訪れ、滞在しているにつれて 町全体の様子が段々分かってきて、町全体をあるイメージで捉えられるようになるだろう。最初の段階で戸惑っていた自分を知ることが出来るだろう。これらの現象は様様の研究や学問、芸術、修業等についてもみられるといえる。― ある意味での進化である。 ここでは、そのような現象を、登山の例から 人間精神の高まりと表現した。正確な表現は心の問題であるから難しい。大きな特徴は段々今までの状況を含むような形で、知識や情報が拡大して、心も質的に変化して以前の状況をより広い視点から捉えられるように成長、進んでいることである。

人生とは何か、人間とは何かの基本的な 方向として、この意味における人間の精神の高まりがあると考えられる。逆に考えてみれば、知識や情報が拡大し、精神の高まりがなければ、必ず、停滞、退屈になり、そのような生活には飽きて、生き生きした人生にはならないのではないだろうか。人間、生物的な 本能的な欲求がある程度満たされれば、必ず、情報や知識を欲求し、やがて神の意思を知りたいという真智への愛に至るのではないだろうか。 この過程にみられる、人間の精神の高まり の様子、 状況に関心を持つ。

人間は真理を追究し、情報、知識の増大方向で進むが どんどん山頂を目指して進む時、 我々の精神全体はどのように変化していくであろうか、人間とはどのように成長していくであろうか。 数学界の天才、ニュートンとライプニッツは 生涯微積分学の発見の先駆者たるを主張して、裁判闘争を続けていたという、お粗末とも言える、事実が存在する。他方、精神の高まりを象徴する用語として、人物たる人物、人格者、覚者、賢人、悟りの境地、聖人などの理想を表す概念が存在する。― 人類自身、全体があたかも子供たちである様に見えてしまう進化した人間を想定すると慄然とするだろう。人生、世界、人類さえみえてしまう者の存在、思い当たる人として お釈迦様などが考えられよう。

ゼロ除算の発見で、人生とはゼロから始まり、何かが拡大を続け、やがて突然にゼロに帰すると表現した。この拡大は 正確には何を意味するであろうか。知識や情報、経験の増大は基本的であるが、覚性度なども気になる要素ではないだろうか。どんどん気づき、世界がどんどん見えてくる面である。

人生、精神的な高まりを通して成人を迎え、円熟期を迎えるが、人間の成長の理想的な境地とは何であろうか。知識を沢山集めてものしりになったり、どんどん発見や発明を続けていけば良いのだろうか。沢山良いものを発見したり、発明していけば良いのだろうか。

人間とは どのように作られているのかと 問う。― 人間存在の意義を求めている。

 

ある山頂に達して、人生、世界とは そのようなものであるとの見識に達した時、その心情のいろいろな在り様と いろいろな差は どのように解釈されるべきであろうか?

良き、人間とは、人生とはどのようなものであろうか?

― しかしながら、人生における基本定理、 人生の意義は感動することにある はそのような思考の基本になるのではないだろうか。

以 上

 

2017.9.16.14:55

2017.9.16.21:21 台風が近づいて来る。

2017.9.17.06:10 台風の余波

2017.9.17.09:45 散歩の後

2017.9.17.18:34

2017.9.18.06:00 台風一過の晴天の朝 難しいことに触れている。

2017,9.18.08:37 晴れ暑くなってくる、昨日は寒い程であった。 一応完成、公表とする。

 

№626

17 9月
NEW !
テーマ:

雨の散歩中、幾つの間の関係かの視点で纏める構想が湧いた。 オイラーの公式の発表年代が分かりましたが、その公式の対数をとった公式が知られていたと言う。 本当にもう少しの所でしたね。 - コーツは1714年に
\log\left(\cos x + i\sin x \right)=ix \
を発見した[1]が、三角関数の周期性による対数関数の多価性を見逃した。
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16.
http://www.scirp.org/journal/ alamt  http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63- 504-1.html
http://www.diogenes.bg/ijam/ contents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/ division%20by%20zero/ announcement%20326-%20the% 20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/ Camera%20ready%20manuscript_ JTSS_A…
https://sites.google.com/site/ sandrapinelas/icddea-2017

我々の初等数学には 間違いと欠陥がある。
学部程度の数学は 相当に変更されるべきである。
しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、 思い込みに囚われた存在であるかを知ることが出来るだろう。 この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、 考えなかったこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)
思えば、我々は未だ微分係数、勾配、傾きの概念さえ、 正しく理解されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

№625

16 9月
NEW !
テーマ:

№625

 

奥村先生:

 

 

実に素晴しいです。 和算も深く、既に名人のレベルです。

深く、 感銘を受けています。 添付のように纏めてみました。

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1

-16. 

http://www.scirp.org/journal/a lamt  http://dx.doi.org/10.4236/alam t.2016.62007
http://www.ijapm.org/show-63-5 04-1.html

http://www.diogenes.bg/ijam/co ntents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/div ision%20by%20zero/announcement %20326-%20the%20divi

http://okmr.yamatoblog.net/

 

Relations of 0 and infinity

Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camer a%20ready%20manuscript_JTSS_A…

https://sites.google.com/site/ sandrapinelas/icddea-2017

 

我々の初等数学には 間違いと欠陥がある。

学部程度の数学は 相当に変更されるべきである。

しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在 であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

 

 

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

 

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかっ たこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)

 

思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解 されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

 

ゼロ除算の日本数学界における講演原稿

15 9月
NEW !
テーマ:

ゼロ除算の日本数学界における講演原稿

 

№623

11 9月

2017090110623

NEW !
テーマ:

№623

 

ビーベルバッハは 氏の予想で相当話題を起しましたが 84年ぶりに意外なところから、完全な解決に達しました。 氏の定理をゼロ除算で図のように 表現されます。 等核写像とゼロ除算は大きな分野になり得るほど問題があります。

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1

-16. 

http://www.scirp.org/journal/a lamt  http://dx.doi.org/10.4236/alam t.2016.62007
http://www.ijapm.org/show-63-5 04-1.html

http://www.diogenes.bg/ijam/co ntents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/div ision%20by%20zero/announcement %20326-%20the%20divi

http://okmr.yamatoblog.net/

 

Relations of 0 and infinity

Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camer a%20ready%20manuscript_JTSS_A…

https://sites.google.com/site/ sandrapinelas/icddea-2017

 

我々の初等数学には 間違いと欠陥がある。

学部程度の数学は 相当に変更されるべきである。

しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在 であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

 

 

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

 

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかっ たこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)

 

思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解 されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

再生核研究所声明 382 (2017.9.11):  ニュートンを越える天才たちに-育成する立場の人に

11 9月

再生核研究所声明 382 (2017.9.11)  ニュートンを越える天才たちに-育成する立場の人に

 

次のような文書を残した: いま思いついたこと:ニュートンは偉く、ガウス、オイラーなども 遥かに及ばないと 何かに書いてあると言うのです。それで、考え、思いついた。 ガウス、オイラーの業績は とても想像も出来なく、如何に基本的で、深く、いろいろな結果がどうして得られたのか、思いもよらない。まさに天才である。数学界にはそのような天才が、結構多いと言える。しかるに、ニュートンの業績は 万有引力の法則、運動の法則、微積分学さえ、理解は常人でも出来き、多くの数学上の結果もそうである。しかるにその偉大さは 比べることも出来ない程であると表現されると言う。それは、どうしてであろうか。確かに世界への甚大な影響として 納得できる面がある。- 初めて スタンフォード大学を訪れた時、確かにニュートンの肖像画が 別格高く掲げられていたことが、鮮明に想い出されてくる。- 今でもそうであろうか?(2017.9.8.10:42)。

 

万物の運動を支配する法則、力、エネルギーの原理、長さ、面積、体積を捉え、傾き、勾配等の概念を捉えたのであるから、森羅万象のある基礎部分をとらえたものとして、世界史における影響が甚大であると考えれば その業績の大きさに驚かされる。

 

世界史における甚大な影響として、科学上ではないが、それらを越える、宗教家の大きな存在に まず、注意を喚起して置きたい。数学者、天文学者では ゼロを数として明確に導入し、負の数も考え、算術の法則(四則演算)を確立し、ゼロ除算0/0=0を宣言したBrahmagupta (598 -668 ?) の 偉大な影響 にも特に注意したい。

 

そのように偉大なるニュートンを発想すれば、それを越える偉大なる歴史上の存在の可能性を考えたくなるのは人情であろう。そこで、天才たちやそれを育成したいと考える人たちに 如何に考えるべきかを述べて置きたい。

 

万人にとって近い存在で、甚大な貢献をするであろう、科学的な分野への志向である。鍵は 生命情報ではないだろうか。偉大なる発見、貢献であるから具体的に言及できるはずがない。しかしながら、科学が未だ十分に達しておらず、しかも万人に甚大な影響を与える科学の未知の分野として、生命と情報分野における飛躍的な発見は ニュートンを越える発見に繋がるのではないだろうか。

生物とは何者か、どのように作られ、どのように活動しているか、本能と環境への対応の原理を支配する科学的な体系、説明である。生命の誕生と終末の後、人間精神の在り様と物理的な世界の関係、殆ど未知の雄大な分野である。

情報とは何か、情報と人間の関係、影響、発展する人工知能の方向性とそれらを統一する原理と理論。情報と物の関係。情報が物を動かしている実例が存在する。

それらの分野における画期的な成果は ニュートンを越える世界史上の発見として出現するのではないだろうか。

これらの難解な課題においてニュ-トンの場合の様に常人でも理解できるような簡明な法則が発見されるのではないだろうか。

人類未だ猿や動物にも劣る存在であるとして、世界史を恥ずかしい歴史として、未来人は考え、評価するだろう。世の天才たちの志向について、またそのような偉大なる人材を育成する立場の方々の注意を喚起させたい。偉大なる楽しい夢である。

それにはまずは、世界史を視野に、人間とは何者かと問い、神の意思を捉えようとする真智への愛を大事に育てて行こうではないか。

 

以 上

2017.9.9.10:15

2017,9.9.14.25

2017.9.9.15:56 秋、柿をとり、栗を拾い、布団を干す。

2017,9,9,22:23

2017.9.10.5:46  秋、結構新しい文の挿入。 気合いが入る。

2017.9.10.10:52

 2017.9.10.13:53

2017.9.10.19:37

2017.9.10.20:55

2017.9.11.05:35良い、続けられる予感。

2017,9.11.06:08 完成、公表。

 

2枚

10 9月
NEW !
テーマ:

インドとイギリス

 

①ニュートンの 世界史における影響の大きさを考えていましたら、 算術の確立者の偉大さに気付いた。 ゼロ、負の数を考え、算数の四則演算を確立させた。何と 0/0=0 の 正しい定義 さえ与えていた。

 

②世界史への影響の大きさに思いを巡らしていました、 インドの偉大なる 巨人が 独りでに 思い浮かんだ。

 

 

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。
そもそも、ニュートン、ダーウィンの時代とは 中世の名残を多く残し、宗教の存在は世界観そのものの基礎に有ったと言える。それで、アリストテレスの世界観や聖書に反して 天動説に対して地動説を唱えるには それこそ命を掛けなければ主張できないような時代背景が 存在していた。
そのような時に世の運動、地上も、天空も、万有を支配する法則が存在するとの考えは それこそ、世界観の大きな変更であり、人類に与えた影響は計り知れない。進化論 人類も動物や生物の進化によるものであるとの考えは、 人間そのものの考え方、捉え方の基本的な変更であり、運動法則とともに科学的な思考、捉え方が世界観を根本的に変えてきたと考えられる。勿論、自然科学などの基礎として果たしている役割の大きさを考えると、驚嘆すべきことである。
人生とは何か、人間とは何か、― 世の中には秩序と法則があり、人間は作られた存在で
その上に 存在している。如何に行くべきか、在るべきかの基本は その法則と作られた存在の元、原理を探し、それに従わざるを得ないとなるだろう。しかしながら、狭く捉えて 唯物史観などの思想も生んだが、それらは、心の問題、生命の神秘的な面を過小評価しておかしな世相も一時は蔓延ったが、自然消滅に向かっているように見える。
自然科学も生物学も目も眩むほどに発展してきている。しかしながら、人類未だ成長していないように感じられるのは、止むことのない抗争、紛争、戦争、医学などの驚異的な発展にも関わらず、人間存在についての掘り下げた発展と進化はどれほどかと考えさせられ、昔の人の方が余程人間らしい人間だったと思われることは 多いのではないだろうか。
上記二人の巨人の役割を、自然科学の基礎に大きな影響を与えた人と捉えれば、我々は一段と深く、巨人の拓いた世界を深めるべきではないだろうか。社会科学や人文社会、人生観や世界観にさらに深い影響を与えると、与えられると考える。
ニュートンの作用、反作用の運動法則などは、人間社会でも、人間の精神、心の世界でも成り立つ原理であり、公正の原則の基礎(再生核研究所声明 1 (2007/1/27): 美しい社会はどうしたら、できるか、美しい社会とは)にもなる。 自国の安全を願って軍備を強化すれば相手国がより、軍備を強化するのは道理、法則のようなものである。慣性の法則、急には何事でも変えられない、移行処置や時間的な猶予が必要なのも法則のようなものである。力の法則 変化には情熱、エネルギー,力が必要であり、変化は人間の本質的な要求である。それらはみな、社会や心の世界でも成り立つ原理であり、掘り下げて学ぶべきことが多い。ダーウィンの進化論については、人間はどのように作られ、どのような進化を目指しているのかと追求すべきであり、人間とは何者かと絶えず問うて行くべきである。根本を見失い、個別の結果の追求に明け暮れているのが、現在における科学の現状と言えるのではないだろうか。単に盲目的に夢中で進んでいる蟻の大群のような生態である。広い視点で見れば、経済の成長、成長と叫んでいるが、地球規模で生態系を環境の面から見れば、癌細胞の増殖のような様ではないだろうか。人間の心の喪失、哲学的精神の欠落している時代であると言える。

以 上
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学

 

今朝2016年8月6日,散歩中 目が眩むような大きな構想が閃いたのであるが、流石に直接表現とはいかず、先ずは世界史上の大きな事件を回想して、準備したい。紀元前の大きな事件についても触れたいが当分 保留したい。

ニュートン、ダーウィンの大きな影響を纏めたので(声明314)今回はユークリッド幾何学の影響について触れたい。

ユークリッド幾何学の建設について、ユークリッド自身(アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? – )は、古代ギリシア数学者天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。)が絶対的な幾何学の建設に努力した様は、『新しい幾何学の発見―ガウス ボヤイ ロバチェフスキー』リワノワ 著松野武 訳1961 東京図書 に見事に描かれており、ここでの考えはその著書に負うところが大きい。

ユークリッドは絶対的な幾何学を建設するためには、絶対的に正しい基礎、公準、公理に基づき、厳格な論理によって如何なる隙や曖昧さを残さず、打ち立てられなければならないとして、来る日も来る日も、アレクサンドリアの海岸を散歩しながら ユークリッド幾何学を建設した(『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた[1][2][3]。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学透視図法円錐曲線論球面天文学、誤謬推理論、図形分割論、天秤などについても著述を残したとされている。)。

ユークリッド幾何学、原論は2000年以上も越えて多くの人に学ばれ、あらゆる論理的な学術書の記述の模範、範として、現在でもその精神は少しも変わっていない、人類の超古典である。― 少し、厳密に述べると、ユークリッド幾何学の基礎、いわゆる第5公準、いわゆる平行線の公理は徹底的に検討され、2000年を経て公理系の考えについての考えは改められ― 公理系とは絶対的な真理という概念ではなく、矛盾のない仮定系である ― 、非ユークリッド幾何学が出現した。論理的な厳密性も徹底的に検討がなされ、ヒルベルトによってユークリッド幾何学は再構成されることになった。非ユークリッド幾何学の出現過程についても上記の著書に詳しい。

しかしながら、ユークリッド幾何学の実態は少しも変わらず、世に絶対的なものがあるとすれば、それは数学くらいではないだろうかと人類は考えているのではないだろうか。

数学の不可思議さに想いを致したい(しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

No.81, May 2012(pdf 432kb)

19/03/2012

ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

)。

― 数学は公理系によって定まり、そこから、論理的に導かれる関係の全体が一つの数学の様 にみえる。いま予想されている関係は、そもそも人間には無関係に確定しているようにみえる。その数学の全体はすべて人間には無関係に存在して、確定しているようにみえる。すなわち、われわれが捉えた数学は、人間の要求や好みで発見された部分で、その全貌は分か らない。抽象的な関係の世界、それはものにも、時間にも、エネルギーにも無関係で、存在 している。それではどうして、存在して、数学は美しいと感動させるのであろうか。現代物理学は宇宙全体の存在した時を述べているが、それでは数学はどうして存在しているのであろうか。宇宙と数学は何か関係が有るのだろうか。不思議で 不思議で仕方がない。数学は絶対で、不変の様にみえる。時間にも無関係であるようにみえる。数学と人間の関係は何だ ろうか。―

数学によって、神の存在を予感する者は 世に多いのではないだろうか。

 

以 上

 

再生核研究所声明3392016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

 

世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

 

Blackholes are where God divided by zero. I don’t believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-

marked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

他方、人間存在の根本的な問題四苦八苦(しくはっく)、根本的な苦 四苦

·         愛別離苦(あいべつりく) – 愛する者と別離すること

·         怨憎会苦(おんぞうえく) – 怨み憎んでいる者に会うこと

·         求不得苦(ぐふとくく) – 求める物が得られないこと

·         五蘊盛苦(ごうんじょうく) – 五蘊(人間の肉体と精神)が思うがままにならないこと

の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。

これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。

ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。

 

以 上

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:
http://www.scirp.org/journal/alamt
   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

 

Announcement 326: The division by zero z/0=0/0=0 – its impact to human beings through education and research

 

 

再生核研究所声明3432017.1.10)オイラーとアインシュタイン

 

世界史に大きな影響を与えた人物と業績について

 

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて

再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学

再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

 

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

 

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(

No.81、2012年5月(PDFファイル432キロバイト) -数学のための国際的な社会…

www.jams.or.jp/kaiho/kaiho-81.pdf

)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。

次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。

ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

 

Blackholes are where God divided by zero. I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (

Gamow, G., My World Line (Viking, New York). p 44, 1970).

 

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。

しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/division%20by%20zero/announcement%20326-%20the%20divi

Announcement 326: The division by zero z/0=0/0=0 – its impact to human beings through education and research

以 上

 

file:///C:/Users/saito%20saburo/Downloads/P1-Division.pdf

 

 

file:///C:/Users/saito%20saburo/Downloads/Y_1770_Euler_Elements%20of%20algebra%20traslated%201840%20l%20p%2059%20(1).pdf

 

再生核研究所声明3532017.2.2) ゼロ除算 記念日

 

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

 

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

 

で、最新のは

 

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0

 

である。

アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。

心すべき要点を纏めて置きたい。

 

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 – 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。

2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。

3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。

4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。

5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。

6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。

以 上

 

追記:

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

№622:

9 9月
NEW !
テーマ:

№622:
散歩の折り、きちんとさせて置きたいと思ったのが 図の形です。
ゼロ除算を適用すれば、一次方程式のクラメールの 公式は、何時でも 美しい基本的な解を ただ一つ定めると、美しい表現になります。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16.
http://www.scirp.org/journal/a lamt  http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-5 04-1.html
http://www.diogenes.bg/ijam/co ntents/2014-27-2/9/9.pdf
http://okmr.yamatoblog.net/div ision%20by%20zero/announcement %20326-%20the%20divi
http://okmr.yamatoblog.net/

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camer a%20ready%20manuscript_JTSS_A…
https://sites.google.com/site/ sandrapinelas/icddea-2017

 

我々の初等数学には 間違いと欠陥がある。

学部程度の数学は 相当に変更されるべきである。

しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在 であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

 

 

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

 

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかっ たこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)

 

思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解 されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

№621

7 9月
2017年09月07日(木)NEW !
テーマ:

№621

図の様に 特異点では、陽関数の微分係数が従来は定義されませんでしたが、 ゼロ除算算法で、新しい意味で、微分が定義されて、 特異点そのもので、数学を議論できます。

 

Dear the leading mathematicians and colleagues:

Apparently, the common sense on the division by zero with a long and mysterious history is wrong and our basic idea on the space around the point at infinity is also wrong since Euclid. On the gradient or on derivatives we have a great missing since $\tan (\pi/2) = 0$. Our mathematics is also wrong in elementary mathematics on the division by zero.

 

I wrote a simple draft on our division by zero. The contents are elementary and have wide connections to various fields beyond mathematics. I expect you write some philosophy, papers and essays on the division by zero from the attached source.

 

 

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1

-16. 

http://www.scirp.org/journal/a lamt  http://dx.doi.org/10.4236/alam t.2016.62007
http://www.ijapm.org/show-63-5 04-1.html

http://www.diogenes.bg/ijam/co ntents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/div ision%20by%20zero/announcement %20326-%20the%20divi

http://okmr.yamatoblog.net/

 

Relations of 0 and infinity

Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camer a%20ready%20manuscript_JTSS_A…

https://sites.google.com/site/ sandrapinelas/icddea-2017

 

 

我々の初等数学には 間違いと欠陥がある。

学部程度の数学は 相当に変更されるべきである。

しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在 であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

 

 

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

 

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかっ たこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)

 

思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解 されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html

№620

7 9月
2017年09月07日(木)NEW !
テーマ:

№620:

 

気になって双曲線の傾きゼロの接戦を考えて見ますと、 それは従来だと 傾き無限大の接戦が出て来ますが、 直交する接戦は同じくなり、 直交とは意外に違います。

接点はゼロ除算できちんと 捉えていますね。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

 

Division by Zero z/0 = 0 in Euclidean Spaces

Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1

-16. 

http://www.scirp.org/journal/a lamt  http://dx.doi.org/10.4236/alam t.2016.62007
http://www.ijapm.org/show-63-5 04-1.html

http://www.diogenes.bg/ijam/co ntents/2014-27-2/9/9.pdf

http://okmr.yamatoblog.net/div ision%20by%20zero/announcement %20326-%20the%20divi

http://okmr.yamatoblog.net/

 

Relations of 0 and infinity

Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camer a%20ready%20manuscript_JTSS_A…

https://sites.google.com/site/ sandrapinelas/icddea-2017

 

 

我々の初等数学には 間違いと欠陥がある。

学部程度の数学は 相当に変更されるべきである。

しかしながら、ゼロ除算の真実を知れば、人間は 人間の愚かさ、人間が如何に予断と偏見、思い込みに囚われた存在 であるかを知ることが出来るだろう。この意味で、ゼロ除算は 人間開放に寄与するだろう。世界、社会が混乱を続けているのは、 人間の無智の故であると言える。

 

 

三角関数や2次曲線論でも理解は不完全で、無限の彼方の概念は、 ユークリッド以来 捉えられていないと言える。 (2017.8.23.06:30 昨夜 風呂でそのような想いが、新鮮な感覚で湧いて来た。)

 

ゼロ除算の優秀性、位置づけ: 要するに孤立特異点以外は すべて従来数学である。 ゼロ除算は、孤立特異点 そのもので、新しいことが言えるとなっている。従来、考えなかっ たこと、できなかったこと ができるようになったのであるから、ゼロ除算の優秀性は歴然であ る。 優秀性の大きさは、新しい発見の影響の大きさによる (2017.8.24.05:40)

 

思えば、我々は未だ微分係数、勾配、傾きの概念さえ、正しく理解 されていないと言える。 目覚めた時そのような考えが独りでに湧いた。)

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\

(2017.2.2)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Abstract: } In this announcement, for its importance we would like to state the

situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

 

\bigskip

\section{Introduction}

%\label{sect1}

By a {\bf natural extension} of the fractions

\begin{equation}

\frac{b}{a}

\end{equation}

for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$

\begin{equation}

\frac{b}{0}=0,

\end{equation}

incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 

The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 –

668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,

Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 

\bigskip

 

{\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying

$$

F (b, a)F (c, d)= F (bc, ad)

$$

for all

$$

a, b, c, d  \in {\bf C }

$$

and

$$

F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.

$$

Then, we obtain, for any $b \in {\bf C } $

$$

F (b, 0) = 0.

$$

}

 

Note that the complete proof of this proposition is simply given by  2 or 3 lines.

We {\bf should  define $F(b,0)= b/0 =0$}, in general.

 

\medskip

We thus should consider, for any complex number $b$, as  (1.2);

that is, for the mapping

\begin{equation}

W = \frac{1}{z},

\end{equation}

the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

 

For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

 

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

 

\medskip

1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

 

\medskip

2) by the intuitive meaning of the fractions (division) by H. Michiwaki – repeated subtraction method,

 

\medskip

3) by the unique extension of the fractions by S. Takahasi,   as in the above,

 

\medskip

4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

 

\medskip

and

 

\medskip

 

5) by considering the values of functions with the mean values of functions.

\medskip

 

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

 

\medskip

 

\medskip

A) a field structure  containing the division by zero — the Yamada field ${\bf Y}$,

 

\medskip

B)  by the gradient of the $y$ axis on the $(x,y)$ plane — $\tan \frac{\pi}{2} =0$,

\medskip

 

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane — the reflection point of zero is zero, not the point at infinity.

\medskip

 

and

\medskip

 

D) by considering rotation of a right circular cone having some very interesting

phenomenon  from some practical and physical problem.

 

\medskip

 

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

 

\medskip

 

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

 

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 

Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 

Meanwhile, we should refer to up-to-date information:

 

{\it Riemann Hypothesis Addendum – Breakthrough

 

Kurt Arbenz

https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum –   Breakthrough.}

 

\medskip

 

Here, we recall Albert Einstein’s words on mathematics:

Blackholes are where God divided by zero.

I don’t believe in mathematics.

George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that “it is well known to students of high school algebra” that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:

Gamow, G., My World Line (Viking, New York). p 44, 1970.

 

Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

 

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

 

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 

For our ideas on the division by zero, see the survey style announcements.

 

\section{Basic Materials of Mathematics}

 

\medskip

 

(1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

 

(2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

 

(3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

 

(4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  –

one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.

Interesting topics are: parallel lines, what is a line? – a line contains the origin as an isolated

point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). – Here note that an orthogonal coordinate system should be fixed first for our all arguments.

 

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity – the very classical result is wrong. We can also prove this elementary result by many elementary ways.

 

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,

the gradient of the $y$ axis is zero; this is given and proved by the fundamental result

$\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.

\medskip

For the Fourier coefficients $a_k$ of a function :

$$

\frac{a_k \pi k^3}{4}

$$

\begin{equation}

= \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 – \pi k,

\end{equation}

for $k=0$, we obtain immediately

\begin{equation}

a_0  = \frac{8}{3}\pi^2

\end{equation}

(see \cite{maple}, (3.4))({ –

Difficulty in Maple for specialization problems}

).

\medskip

 

These results are derived also from  the {\bf division by zero calculus}:

For any formal Laurent expansion around $z=a$,

\begin{equation}

f(z) = \sum_{n=-\infty}^{\infty} C_n (z – a)^n,

\end{equation}

we obtain the identity, by the division by zero

 

\begin{equation}

f(a) =  C_0.

\end{equation}

\medskip

 

The typical example is that, as we can derive by the elementary way,

$$

\tan \frac{\pi}{2} =0.

$$

\medskip

 

We gave  many examples with geometric meanings in \cite{mos}.

 

This fundamental result leads to the important new definition:

From the viewpoint of the division by zero, when there exists the limit, at $ x$

\begin{equation}

f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) – f(x)}{h}  =\infty

\end{equation}

or

\begin{equation}

f^\prime(x) =  -\infty,

\end{equation}

both cases, we can write them as follows:

\begin{equation}

f^\prime(x) =  0.

\end{equation}

\medskip

 

For the elementary ordinary differential equation

\begin{equation}

y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,

\end{equation}

how will be the case at the point $x = 0$? From its general solution, with a general constant $C$

\begin{equation}

y = \log x + C,

\end{equation}

we see that, by the division by zero,

\begin{equation}

y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,

\end{equation}

that will mean that the division by zero (1.2) is very natural.

 

In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 

However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and

\begin{equation}

\lim_{x \to +0} \left(\log x \right)^\prime = +\infty.

\end{equation}

In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:

\begin{equation}

\left[ \left(\log x \right)^\prime \right]_{x=0}= 0

\end{equation}

and we will be able to understand its sense graphycally.

 

By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

 

(7): We shall introduce the typical division by zero calculus.

 

For the integral

\begin{equation}

\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),

\end{equation}

we obtain, by the division by zero calculus,

\begin{equation}

\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.

\end{equation}

 

For example, in the ordinary differential equation

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},

\end{equation}

in order to look for a special solution, by setting $y = A e^{kx}$ we have, from

\begin{equation}

y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},

\end{equation}

\begin{equation}

y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.

\end{equation}

For $k = -3$, by the division by zero calculus, we obtain

\begin{equation}

y = e^{-3x} \left( – \frac{5}{2}x –  \frac{5}{4}\right),

\end{equation}

and so, we can obtain the special solution

\begin{equation}

y = – \frac{5}{2}x e^{-3x}.

\end{equation}

 

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l’Hopital’s rule.

 

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,

for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.

\end{equation}

However,

from the identity —

the Laurent expansion around $z=1$,

\begin{equation}

\frac{z}{z-1} = \frac{1}{z-1} + 1,

\end{equation}

we have

\begin{equation}

\left[\frac{z}{z-1}\right]_{z = 1} = 1.

\end{equation}

For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

 

\section{Albert Einstein’s biggest blunder}

The division by zero is directly related to the Einstein’s theory and various

physical problems

containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

 

Note that the Big Bang also may be related to the division by zero like the blackholes.

 

\section{Computer systems}

The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 

By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

 

\section{General  ideas on the universe}

The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

 

\bigskip

 

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 

\bigskip

 

\section{\bf Fundamental open problem}

 

{\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 

\medskip

 

In order to make clear the problem, we  give a prototype example.

We have the identity by the divison by zero calculus: For

 

\begin{equation}

f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.

\end{equation}

From the real part and imaginary part of the function, we have, for $ z= x +iy$

\begin{equation}

\frac{1 – x^2 – y^2}{(1 – x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)

\end{equation}

and

\begin{equation}

\frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),

\end{equation}

respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{bb}

J. P.  Barukcic and I.  Barukcic, Anti Aristotle –

The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.

doi: 10.4236/jamp.2016.44085.

 

\bibitem{bht}

J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,

Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

 

\bibitem{berg}

J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,

arXiv:1609.02812v2[math.LO] 17 Sep 2016.

 

 

\bibitem{cs}

L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{ra}

T. S. Reis and J.A.D.W. Anderson,

Transdifferential and Transintegral Calculus,

Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I

WCECS 2014, 22-24 October, 2014, San Francisco, USA

 

\bibitem{ra2}

T. S. Reis and J.A.D.W. Anderson,

Transreal Calculus,

IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{maple}

Introduction to Maple – UBC Mathematics

クリックしてlesson1.pdfにアクセス

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

 

 

\end{thebibliography}

 

\end{document}

 

\documentclass[12pt]{article}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}

\title{\bf  Announcement 362:   Discovery of the division by zero as \\

$0/0=1/0=z/0=0$\\

(2017.5.5)}

\author{{\it Institute of Reproducing Kernels}\\

Kawauchi-cho, 5-1648-16,\\

Kiryu 376-0041, Japan\\

}

\date{\today}

\maketitle

{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 – BC322) and Euclid (BC 3 Century – ), and the division by zero is since Brahmagupta  (598 – 668 ?).

In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

 

For the details, see the references and the site: http://okmr.yamatoblog.net/

 

 

\bibliographystyle{plain}

\begin{thebibliography}{10}

 

\bibitem{kmsy}

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,

New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,

Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

 

\bibitem{msy}

H. Michiwaki, S. Saitoh,  and  M.Yamada,

Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1–8. http://www.ijapm.org/show-63-504-1.html

 

\bibitem{ms}

T. Matsuura and S. Saitoh,

Matrices and division by zero $z/0=0$, Advances in Linear Algebra

\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt

 

\bibitem{mos}

H.  Michiwaki, H. Okumura, and S. Saitoh,

Division by Zero $z/0 = 0$ in Euclidean Spaces.

International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16.

 

\bibitem{osm}

H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,

Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

 

\bibitem{romig}

H. G. Romig, Discussions: Early History of Division by Zero,

American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

 

\bibitem{s}

S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87–95. http://www.scirp.org/journal/ALAMT/

 

\bibitem{s16}

S. Saitoh, A reproducing kernel theory with some general applications,

Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications – Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

 

\bibitem{ttk}

S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

 

\bibitem{ann179}

Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

 

\bibitem{ann185}

Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

 

\bibitem{ann237}

Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

 

\bibitem{ann246}

Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

 

\bibitem{ann247}

Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

 

\bibitem{ann250}

Announcement 250 (2015.10.20): What are numbers? –  the Yamada field containing the division by zero $z/0=0$.

 

\bibitem{ann252}

Announcement 252 (2015.11.1): Circles and

curvature – an interpretation by Mr.

Hiroshi Michiwaki of the division by

zero $r/0 = 0$.

 

\bibitem{ann281}

Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

 

\bibitem{ann282}

Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

 

\bibitem{ann293}

Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

 

\bibitem{ann300}

Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

 

\bibitem{ann326}

Announcement 326 (2016.10.17): The division by zero z/0=0 – its impact to human beings through education and research.

 

\bibitem{ann352}

Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

 

\bibitem{ann354}

Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? — relations of $0$ and infinity.

 

\end{thebibliography}

 

\end{document}

 

 

再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

 

http://ameblo.jp/syoshinoris/theme-10006253398.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12276045402.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12263708422.html

 

1/0=0、0/0=0、z/0=0

http://ameblo.jp/syoshinoris/entry-12272721615.html